Newer
Older
// Copyright 2017 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
//!
//! A collator node lives on a distinct parachain and submits a proposal for
//! a state transition, along with a proof for its validity
//! (what we might call a witness or block data).
//!
//! One of collators' other roles is to route messages between chains.
//! Each parachain produces a list of "egress" posts of messages for each other
//! parachain on each block, for a total of N^2 lists all together.
//!
//! We will refer to the egress list at relay chain block X of parachain A with
//! destination B as egress(X)[A -> B]
//!
//! On every block, each parachain will be intended to route messages from some
//! subset of all the other parachains. (NOTE: in practice this is not done until PoC-3)
//!
//! Since the egress information is unique to every block, when routing from a
//! parachain a collator must gather all egress posts from that parachain
//! up to the last point in history that messages were successfully routed
//! from that parachain, accounting for relay chain blocks where no candidate
//! from the collator's parachain was produced.
//!
//! In the case that all parachains route to each other and a candidate for the
//! collator's parachain was included in the last relay chain block, the collator
//! only has to gather egress posts from other parachains one block back in relay
//! chain history.
//!
//! This crate defines traits which provide context necessary for collation logic
//! to be performed, as the collation logic itself.
use std::collections::HashSet;
asynchronous rob
committed
use std::fmt;
use futures::{future, Future, Stream, FutureExt, TryFutureExt, StreamExt, task::Spawn};
use log::{warn, error};
use primitives::{Pair, Blake2Hasher};
use polkadot_primitives::{
self, BlockData, DutyRoster, HeadData, ConsolidatedIngress, Message, Id as ParaId,
OutgoingMessages, PoVBlock, Status as ParachainStatus, ValidatorId, CollatorPair,
}
};
use polkadot_cli::{
Worker, IntoExit, ProvideRuntimeApi, AbstractService, CustomConfiguration, ParachainHost,
asynchronous rob
committed
};
use polkadot_network::validation::{LeafWorkParams, ValidationNetwork};
use polkadot_network::{PolkadotNetworkService, PolkadotProtocol};
use polkadot_runtime::RuntimeApi;
pub use polkadot_cli::VersionInfo;
pub use polkadot_network::validation::Incoming;
pub use polkadot_validation::SignedStatement;
pub use polkadot_primitives::parachain::CollatorId;
pub use sc_network::PeerId;
asynchronous rob
committed
const COLLATION_TIMEOUT: Duration = Duration::from_secs(30);
/// An abstraction over the `Network` with useful functions for a `Collator`.
pub trait Network: Send + Sync {
/// Convert the given `CollatorId` to a `PeerId`.
fn collator_id_to_peer_id(&self, collator_id: CollatorId) ->
Box<dyn Future<Output=Option<PeerId>> + Send>;
/// Create a `Stream` of checked statements for the given `relay_parent`.
///
/// The returned stream will not terminate, so it is required to make sure that the stream is
/// dropped when it is not required anymore. Otherwise, it will stick around in memory
/// infinitely.
fn checked_statements(&self, relay_parent: Hash) -> Box<dyn Stream<Item=SignedStatement>>;
impl<P, E, SP> Network for ValidationNetwork<P, E, PolkadotNetworkService, SP> where
P: 'static + Send + Sync,
E: 'static + Send + Sync,
SP: 'static + Spawn + Clone + Send + Sync,
{
fn collator_id_to_peer_id(&self, collator_id: CollatorId) ->
Box<dyn Future<Output=Option<PeerId>> + Send>
Box::new(Self::collator_id_to_peer_id(self, collator_id))
fn checked_statements(&self, relay_parent: Hash) -> Box<dyn Stream<Item=SignedStatement>> {
Box::new(Self::checked_statements(self, relay_parent))
asynchronous rob
committed
/// Error to return when the head data was invalid.
#[derive(Clone, Copy, Debug)]
pub struct InvalidHead;
/// Collation errors.
#[derive(Debug)]
pub enum Error<R> {
/// Error on the relay-chain side of things.
Polkadot(R),
/// Error on the collator side of things.
Collator(InvalidHead),
}
impl<R: fmt::Display> fmt::Display for Error<R> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Error::Polkadot(ref err) => write!(f, "Polkadot node error: {}", err),
Error::Collator(_) => write!(f, "Collator node error: Invalid head data"),
}
}
}
/// The Polkadot client type.
pub type PolkadotClient<B, E> = client::Client<B, E, Block, RuntimeApi>;
/// Something that can build a `ParachainContext`.
pub trait BuildParachainContext {
/// The parachain context produced by the `build` function.
type ParachainContext: self::ParachainContext;
/// Build the `ParachainContext`.
self,
client: Arc<PolkadotClient<B, E>>,
network: Arc<dyn Network>,
) -> Result<Self::ParachainContext, ()>
where
B: client_api::backend::Backend<Block, Blake2Hasher> + 'static,
E: client::CallExecutor<Block, Blake2Hasher> + Clone + Send + Sync + 'static,
SP: Spawn + Clone + Send + Sync + 'static;
/// Parachain context needed for collation.
///
/// This can be implemented through an externally attached service or a stub.
/// This is expected to be a lightweight, shared type like an Arc.
pub trait ParachainContext: Clone {
type ProduceCandidate: Future<Output = Result<(BlockData, HeadData, OutgoingMessages), InvalidHead>>;
/// Produce a candidate, given the relay parent hash, the latest ingress queue information
/// and the last parachain head.
fn produce_candidate<I: IntoIterator<Item=(ParaId, Message)>>(
relay_parent: Hash,
}
/// Relay chain context needed to collate.
/// This encapsulates a network and local database which may store
/// some of the input.
pub trait RelayChainContext {
type Error: std::fmt::Debug;
/// Future that resolves to the un-routed egress queues of a parachain.
/// The first item is the oldest.
type FutureEgress: Future<Output = Result<ConsolidatedIngress, Self::Error>>;
/// Get un-routed egress queues from a parachain to the local parachain.
asynchronous rob
committed
fn unrouted_egress(&self, _id: ParaId) -> Self::FutureEgress;
/// Produce a candidate for the parachain, with given contexts, parent head, and signing key.
relay_parent: Hash,
parachain_status: ParachainStatus,
mut para_context: P,
-> Result<(parachain::Collation, OutgoingMessages), Error<R::Error>>
R: RelayChainContext,
P: ParachainContext,
P::ProduceCandidate: Send,
let ingress = relay_context.unrouted_egress(local_id).await.map_err(Error::Polkadot)?;
let (block_data, head_data, mut outgoing) = para_context.produce_candidate(
relay_parent,
parachain_status,
ingress.0.iter().flat_map(|&(id, ref msgs)| msgs.iter().cloned().map(move |msg| (id, msg)))
).map_err(Error::Collator).await?;
let block_data_hash = block_data.hash();
let signature = key.sign(block_data_hash.as_ref());
let egress_queue_roots =
polkadot_validation::egress_roots(&mut outgoing.outgoing_messages);
let info = parachain::CollationInfo {
parachain_index: local_id,
collator: key.public(),
signature,
egress_queue_roots,
block_data_hash,
upward_messages: Vec::new(),
};
let collation = parachain::Collation {
pov: PoVBlock {
block_data,
ingress,
},
};
Ok((collation, outgoing))
struct ApiContext<P, E, SP> {
network: Arc<ValidationNetwork<P, E, PolkadotNetworkService, SP>>,
impl<P: 'static, E: 'static, SP: 'static> RelayChainContext for ApiContext<P, E, SP> where
P: ProvideRuntimeApi + Send + Sync,
P::Api: ParachainHost<Block>,
E: futures::Future<Output=()> + Clone + Send + Sync + 'static,
SP: Spawn + Clone + Send + Sync
{
type Error = String;
type FutureEgress = Box<dyn Future<Output=Result<ConsolidatedIngress, String>> + Unpin + Send>;
asynchronous rob
committed
fn unrouted_egress(&self, _id: ParaId) -> Self::FutureEgress {
// TODO: https://github.com/paritytech/polkadot/issues/253
//
// Fetch ingress and accumulate all unrounted egress
let _session = self.network.instantiate_leaf_work(LeafWorkParams {
local_session_key: None,
parent_hash: self.parent_hash,
authorities: self.validators.clone(),
})
.map_err(|e| format!("unable to instantiate validation session: {:?}", e));
asynchronous rob
committed
Box::new(future::ok(ConsolidatedIngress(Vec::new())))
}
}
struct CollationNode<P, E> {
build_parachain_context: P,
impl<P, E> IntoExit for CollationNode<P, E> where
E: futures::Future<Output=()> + Unpin + Send + 'static
fn into_exit(self) -> Self::Exit {
impl<P, E> Worker for CollationNode<P, E> where
P: BuildParachainContext + Send + 'static,
P::ParachainContext: Send + 'static,
<P::ParachainContext as ParachainContext>::ProduceCandidate: Send + 'static,
E: futures::Future<Output=()> + Clone + Unpin + Send + Sync + 'static,
type Work = Box<dyn Future<Output=()> + Unpin + Send>;
fn configuration(&self) -> CustomConfiguration {
let mut config = CustomConfiguration::default();
config.collating_for = Some((
fn work<S, SC, B, CE, SP>(self, service: &S, spawner: SP) -> Self::Work
where
S: AbstractService<
Block = Block,
RuntimeApi = RuntimeApi,
Backend = B,
SelectChain = SC,
NetworkSpecialization = PolkadotProtocol,
CallExecutor = CE,
>,
SC: polkadot_service::SelectChain<Block> + 'static,
B: client_api::backend::Backend<Block, Blake2Hasher> + 'static,
CE: client::CallExecutor<Block, Blake2Hasher> + Clone + Send + Sync + 'static,
SP: Spawn + Clone + Send + Sync + 'static,
let CollationNode { build_parachain_context, exit, para_id, key } = self;
let network = service.network();
let known_oracle = client.clone();
let select_chain = if let Some(select_chain) = service.select_chain() {
select_chain
} else {
error!("The node cannot work because it can't select chain.");
let is_known = move |block_hash: &Hash| {
use consensus_common::BlockStatus;
use polkadot_network::gossip::Known;
match known_oracle.block_status(&BlockId::hash(*block_hash)) {
Err(_) | Ok(BlockStatus::Unknown) | Ok(BlockStatus::Queued) => None,
Ok(BlockStatus::KnownBad) => Some(Known::Bad),
Ok(BlockStatus::InChainWithState) | Ok(BlockStatus::InChainPruned) =>
match select_chain.leaves() {
Err(_) => None,
Ok(leaves) => if leaves.contains(block_hash) {
Some(Known::Leaf)
} else {
Some(Known::Old)
},
}
}
};
let message_validator = polkadot_network::gossip::register_validator(
asynchronous rob
committed
network.clone(),
let validation_network = Arc::new(ValidationNetwork::new(
network.clone(),
exit.clone(),
message_validator,
client.clone(),
let parachain_context = match build_parachain_context.build(
client.clone(),
validation_network.clone(),
) {
Ok(ctx) => ctx,
Err(()) => {
error!("Could not build the parachain context!");
}
};
let inner_exit = exit.clone();
let work = client.import_notification_stream()
.for_each(move |notification| {
macro_rules! try_fr {
($e:expr) => {
match $e {
Ok(x) => x,
Err(e) => return future::Either::Left(future::err(Error::Polkadot(
format!("{:?}", e)
))),
}
let relay_parent = notification.hash;
let id = BlockId::hash(relay_parent);
let network = network.clone();
let key = key.clone();
let parachain_context = parachain_context.clone();
let validation_network = validation_network.clone();
let inner_exit_2 = inner_exit.clone();
let status = match try_fr!(api.parachain_status(&id, para_id)) {
Some(status) => status,
None => return future::Either::Left(future::ok(())),
let validators = try_fr!(api.validators(&id));
let targets = compute_targets(
para_id,
try_fr!(api.duty_roster(&id)),
);
let context = ApiContext {
network: validation_network,
parent_hash: relay_parent,
let collation_work = collate(
parachain_context,
key,
).map_ok(move |(collation, outgoing)| {
network.with_spec(move |spec, ctx| {
let res = spec.add_local_collation(
ctx,
relay_parent,
targets,
collation,
outgoing,
);
let exit = inner_exit_2.clone();
tokio::spawn(future::select(res, exit).map(drop));
future::Either::Right(collation_work)
let deadlined = future::select(
work,
futures_timer::Delay::new(COLLATION_TIMEOUT)
);
let silenced = deadlined
.map(|either| {
if let future::Either::Right(_) = either {
warn!("Collation failure: timeout");
}
});
let future = future::select(
silenced,
tokio::spawn(future);
future::ready(())
let work_and_exit = future::select(work, exit)
.map(|_| ());
fn compute_targets(para_id: ParaId, session_keys: &[ValidatorId], roster: DutyRoster) -> HashSet<ValidatorId> {
use polkadot_primitives::parachain::Chain;
roster.validator_duty.iter().enumerate()
.filter(|&(_, c)| c == &Chain::Parachain(para_id))
.filter_map(|(i, _)| session_keys.get(i))
.cloned()
.collect()
}
/// Run a collator node with the given `RelayChainContext` and `ParachainContext`
/// build by the given `BuildParachainContext` and arguments to the underlying polkadot node.
///
/// Provide a future which resolves when the node should exit.
/// This function blocks until done.
pub fn run_collator<P, E>(
build_parachain_context: P,
) -> polkadot_cli::error::Result<()> where
P: BuildParachainContext + Send + 'static,
P::ParachainContext: Send + 'static,
<P::ParachainContext as ParachainContext>::ProduceCandidate: Send + 'static,
E: futures::Future<Output = ()> + Unpin + Send + Clone + Sync + 'static,
let node_logic = CollationNode { build_parachain_context, exit, para_id, key };
polkadot_cli::run(node_logic, version)
use std::collections::HashMap;
use polkadot_primitives::parachain::{TargetedMessage, FeeSchedule};
#[derive(Default, Clone)]
struct DummyRelayChainContext {
ingress: HashMap<ParaId, ConsolidatedIngress>
impl RelayChainContext for DummyRelayChainContext {
type FutureEgress = Box<dyn Future<Output=Result<ConsolidatedIngress,()>> + Unpin>;
fn unrouted_egress(&self, para_id: ParaId) -> Self::FutureEgress {
match self.ingress.get(¶_id) {
Some(ingress) => Box::new(future::ok(ingress.clone())),
#[derive(Clone)]
struct DummyParachainContext;
impl ParachainContext for DummyParachainContext {
type ProduceCandidate = future::Ready<Result<(BlockData, HeadData, OutgoingMessages), InvalidHead>>;
fn produce_candidate<I: IntoIterator<Item=(ParaId, Message)>>(
_relay_parent: Hash,
// send messages right back.
BlockData(vec![1, 2, 3, 4, 5,]),
HeadData(vec![9, 9, 9]),
OutgoingMessages {
outgoing_messages: ingress.into_iter().map(|(id, msg)| TargetedMessage {
target: id,
data: msg.0,
}).collect(),
}
))
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
fn collates_correct_queue_roots() {
let mut context = DummyRelayChainContext::default();
let id = ParaId::from(100);
let a = ParaId::from(123);
let b = ParaId::from(456);
let messages_from_a = vec![
Message(vec![1, 1, 1]),
Message(b"helloworld".to_vec()),
];
let messages_from_b = vec![
Message(b"dogglesworth".to_vec()),
Message(b"buy_1_chili_con_carne_here_is_my_cash".to_vec()),
];
let root_a = ::polkadot_validation::message_queue_root(
messages_from_a.iter().map(|msg| &msg.0)
);
let root_b = ::polkadot_validation::message_queue_root(
messages_from_b.iter().map(|msg| &msg.0)
);
context.ingress.insert(id, ConsolidatedIngress(vec![
(b, messages_from_b),
(a, messages_from_a),
]));
Default::default(),
ParachainStatus {
head_data: HeadData(vec![5]),
balance: 10,
fee_schedule: FeeSchedule {
base: 0,
per_byte: 1,
},
},
context.clone(),
DummyParachainContext,
Arc::new(Sr25519Keyring::Alice.pair().into()),
);
let collation = futures::executor::block_on(future).unwrap().0;
// ascending order by root.
assert_eq!(collation.info.egress_queue_roots, vec![(a, root_a), (b, root_b)]);