Newer
Older
// Copyright 2017 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
//!
//! A collator node lives on a distinct parachain and submits a proposal for
//! a state transition, along with a proof for its validity
//! (what we might call a witness or block data).
//!
//! One of collators' other roles is to route messages between chains.
//! Each parachain produces a list of "egress" posts of messages for each other
//! parachain on each block, for a total of N^2 lists all together.
//!
//! We will refer to the egress list at relay chain block X of parachain A with
//! destination B as egress(X)[A -> B]
//!
//! On every block, each parachain will be intended to route messages from some
//! subset of all the other parachains. (NOTE: in practice this is not done until PoC-3)
//!
//! Since the egress information is unique to every block, when routing from a
//! parachain a collator must gather all egress posts from that parachain
//! up to the last point in history that messages were successfully routed
//! from that parachain, accounting for relay chain blocks where no candidate
//! from the collator's parachain was produced.
//!
//! In the case that all parachains route to each other and a candidate for the
//! collator's parachain was included in the last relay chain block, the collator
//! only has to gather egress posts from other parachains one block back in relay
//! chain history.
//!
//! This crate defines traits which provide context necessary for collation logic
//! to be performed, as the collation logic itself.
use std::collections::HashSet;
asynchronous rob
committed
use std::fmt;
use futures::{future, Stream, Future, IntoFuture};
use polkadot_primitives::{BlockId, SessionKey, Hash, Block};
asynchronous rob
committed
use polkadot_primitives::parachain::{
self, BlockData, DutyRoster, HeadData, ConsolidatedIngress, Message, Id as ParaId, Extrinsic,
PoVBlock,
};
use polkadot_cli::{PolkadotService, CustomConfiguration, ParachainHost};
use polkadot_cli::{Worker, IntoExit, ProvideRuntimeApi, TaskExecutor};
use polkadot_network::validation::{ValidationNetwork, SessionParams};
use polkadot_network::NetworkService;
use consensus_authorities::AuthoritiesApi;
asynchronous rob
committed
pub use polkadot_cli::VersionInfo;
pub use polkadot_network::validation::Incoming;
asynchronous rob
committed
const COLLATION_TIMEOUT: Duration = Duration::from_secs(30);
asynchronous rob
committed
/// Error to return when the head data was invalid.
#[derive(Clone, Copy, Debug)]
pub struct InvalidHead;
/// Collation errors.
#[derive(Debug)]
pub enum Error<R> {
/// Error on the relay-chain side of things.
Polkadot(R),
/// Error on the collator side of things.
Collator(InvalidHead),
}
impl<R: fmt::Display> fmt::Display for Error<R> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Error::Polkadot(ref err) => write!(f, "Polkadot node error: {}", err),
Error::Collator(_) => write!(f, "Collator node error: Invalid head data"),
}
}
}
/// Parachain context needed for collation.
///
/// This can be implemented through an externally attached service or a stub.
/// This is expected to be a lightweight, shared type like an Arc.
pub trait ParachainContext: Clone {
type ProduceCandidate: IntoFuture<Item=(BlockData, HeadData, Extrinsic), Error=InvalidHead>;
/// Produce a candidate, given the latest ingress queue information and the last parachain head.
fn produce_candidate<I: IntoIterator<Item=(ParaId, Message)>>(
&self,
}
/// Relay chain context needed to collate.
/// This encapsulates a network and local database which may store
/// some of the input.
pub trait RelayChainContext {
type Error: ::std::fmt::Debug;
/// Future that resolves to the un-routed egress queues of a parachain.
/// The first item is the oldest.
type FutureEgress: IntoFuture<Item=ConsolidatedIngress, Error=Self::Error>;
/// Get un-routed egress queues from a parachain to the local parachain.
asynchronous rob
committed
fn unrouted_egress(&self, _id: ParaId) -> Self::FutureEgress;
/// Produce a candidate for the parachain, with given contexts, parent head, and signing key.
pub fn collate<'a, R, P>(
local_id: ParaId,
last_head: HeadData,
relay_context: R,
para_context: P,
key: Arc<ed25519::Pair>,
)
asynchronous rob
committed
-> impl Future<Item=parachain::Collation, Error=Error<R::Error>> + 'a
R: RelayChainContext,
R::FutureEgress: 'a,
P: ParachainContext + 'a,
<P::ProduceCandidate as IntoFuture>::Future: Send,
let ingress = relay_context.unrouted_egress(local_id).into_future().map_err(Error::Polkadot);
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
ingress
.and_then(move |ingress| {
para_context.produce_candidate(
last_head,
ingress.0.iter().flat_map(|&(id, ref msgs)| msgs.iter().cloned().map(move |msg| (id, msg)))
)
.into_future()
.map(move |x| (ingress, x))
.map_err(Error::Collator)
})
.and_then(move |(ingress, (block_data, head_data, mut extrinsic))| {
let block_data_hash = block_data.hash();
let signature = key.sign(block_data_hash.as_ref()).into();
let egress_queue_roots =
polkadot_validation::egress_roots(&mut extrinsic.outgoing_messages);
let receipt = parachain::CandidateReceipt {
parachain_index: local_id,
collator: key.public(),
signature,
head_data,
egress_queue_roots,
fees: 0,
block_data_hash,
upward_messages: Vec::new(),
};
Ok(parachain::Collation {
receipt,
pov: PoVBlock {
block_data,
ingress,
},
})
asynchronous rob
committed
})
struct ApiContext<P, E> {
network: ValidationNetwork<P, E, NetworkService, TaskExecutor>,
parent_hash: Hash,
authorities: Vec<SessionKey>,
}
impl<P: 'static, E: 'static> RelayChainContext for ApiContext<P, E> where
P: ProvideRuntimeApi + Send + Sync,
P::Api: ParachainHost<Block>,
E: Future<Item=(),Error=()> + Clone + Send + Sync + 'static,
{
type Error = String;
type FutureEgress = Box<Future<Item=ConsolidatedIngress, Error=String> + Send>;
asynchronous rob
committed
fn unrouted_egress(&self, _id: ParaId) -> Self::FutureEgress {
// TODO: https://github.com/paritytech/polkadot/issues/253
//
// Fetch ingress and accumulate all unrounted egress
let _session = self.network.instantiate_session(SessionParams {
local_session_key: None,
parent_hash: self.parent_hash,
authorities: self.authorities.clone(),
}).map_err(|e| format!("unable to instantiate validation session: {:?}", e));
asynchronous rob
committed
Box::new(future::ok(ConsolidatedIngress(Vec::new())))
}
}
struct CollationNode<P, E> {
parachain_context: P,
exit: E,
para_id: ParaId,
key: Arc<ed25519::Pair>,
}
impl<P, E> IntoExit for CollationNode<P, E> where
P: ParachainContext + Send + 'static,
E: Future<Item=(),Error=()> + Send + 'static
{
type Exit = E;
fn into_exit(self) -> Self::Exit {
self.exit
}
}
impl<P, E> Worker for CollationNode<P, E> where
P: ParachainContext + Send + 'static,
E: Future<Item=(),Error=()> + Clone + Send + Sync + 'static,
<P::ProduceCandidate as IntoFuture>::Future: Send + 'static,
type Work = Box<Future<Item=(),Error=()> + Send>;
fn configuration(&self) -> CustomConfiguration {
let mut config = CustomConfiguration::default();
config.collating_for = Some((
self.para_id.clone(),
));
config
}
fn work<S>(self, service: &S, task_executor: TaskExecutor) -> Self::Work
let CollationNode { parachain_context, exit, para_id, key } = self;
let client = service.client();
let network = service.network();
let known_oracle = client.clone();
let select_chain = if let Some(select_chain) = service.select_chain() {
select_chain
} else {
info!("The node cannot work because it can't select chain.");
return Box::new(future::err(()));
};
let message_validator = polkadot_network::gossip::register_validator(
asynchronous rob
committed
network.clone(),
move |block_hash: &Hash| {
use polkadot_network::gossip::Known;
match known_oracle.block_status(&BlockId::hash(*block_hash)) {
Err(_) | Ok(BlockStatus::Unknown) | Ok(BlockStatus::Queued) => None,
Ok(BlockStatus::KnownBad) => Some(Known::Bad),
Ok(BlockStatus::InChainWithState) | Ok(BlockStatus::InChainPruned) =>
Err(_) => None,
Ok(leaves) => if leaves.contains(block_hash) {
Some(Known::Leaf)
} else {
Some(Known::Old)
},
}
}
},
);
let validation_network = ValidationNetwork::new(
network.clone(),
exit.clone(),
message_validator,
client.clone(),
task_executor,
);
let inner_exit = exit.clone();
let work = client.import_notification_stream()
.for_each(move |notification| {
macro_rules! try_fr {
($e:expr) => {
match $e {
Ok(x) => x,
Err(e) => return future::Either::A(future::err(Error::Polkadot(
format!("{:?}", e)
))),
}
let relay_parent = notification.hash;
let id = BlockId::hash(relay_parent);
let network = network.clone();
let key = key.clone();
let parachain_context = parachain_context.clone();
let validation_network = validation_network.clone();
let work = future::lazy(move || {
let last_head = match try_fr!(api.parachain_head(&id, para_id)) {
Some(last_head) => last_head,
None => return future::Either::A(future::ok(())),
};
let authorities = try_fr!(api.authorities(&id));
let targets = compute_targets(
para_id,
authorities.as_slice(),
try_fr!(api.duty_roster(&id)),
);
let context = ApiContext {
network: validation_network,
parent_hash: relay_parent,
authorities,
};
let collation_work = collate(
para_id,
HeadData(last_head),
parachain_context,
key,
).map(move |collation| {
network.with_spec(move |spec, ctx| spec.add_local_collation(
ctx,
relay_parent,
targets,
collation,
));
});
future::Either::B(collation_work)
});
let deadlined = Timeout::new(work, COLLATION_TIMEOUT);
let silenced = deadlined.then(|res| match res {
Ok(()) => Ok(()),
Err(_) => {
warn!("Collation failure: timeout");
tokio::spawn(silenced.select(inner_exit.clone()).then(|_| Ok(())));
Ok(())
});
let work_and_exit = work.select(exit).then(|_| Ok(()));
Box::new(work_and_exit) as Box<_>
}
}
fn compute_targets(para_id: ParaId, session_keys: &[SessionKey], roster: DutyRoster) -> HashSet<SessionKey> {
use polkadot_primitives::parachain::Chain;
roster.validator_duty.iter().enumerate()
.filter(|&(_, c)| c == &Chain::Parachain(para_id))
.filter_map(|(i, _)| session_keys.get(i))
.cloned()
.collect()
}
/// Run a collator node with the given `RelayChainContext` and `ParachainContext` and
/// arguments to the underlying polkadot node.
///
/// Provide a future which resolves when the node should exit.
/// This function blocks until done.
asynchronous rob
committed
pub fn run_collator<P, E, I, ArgT>(
parachain_context: P,
para_id: ParaId,
exit: E,
key: Arc<ed25519::Pair>,
asynchronous rob
committed
args: I,
) -> polkadot_cli::error::Result<()> where
P: ParachainContext + Send + 'static,
<P::ProduceCandidate as IntoFuture>::Future: Send + 'static,
E::Future: Send + Clone + Sync + 'static,
asynchronous rob
committed
I: IntoIterator<Item=ArgT>,
ArgT: Into<std::ffi::OsString> + Clone,
{
let node_logic = CollationNode { parachain_context, exit: exit.into_future(), para_id, key };
use std::collections::HashMap;
use polkadot_primitives::parachain::OutgoingMessage;
use keyring::AuthorityKeyring;
#[derive(Default, Clone)]
struct DummyRelayChainContext {
ingress: HashMap<ParaId, ConsolidatedIngress>
impl RelayChainContext for DummyRelayChainContext {
type FutureEgress = Box<Future<Item=ConsolidatedIngress,Error=()>>;
fn unrouted_egress(&self, para_id: ParaId) -> Self::FutureEgress {
match self.ingress.get(¶_id) {
Some(ingress) => Box::new(future::ok(ingress.clone())),
None => Box::new(future::empty()),
}
#[derive(Clone)]
struct DummyParachainContext;
impl ParachainContext for DummyParachainContext {
type ProduceCandidate = Result<(BlockData, HeadData, Extrinsic), InvalidHead>;
fn produce_candidate<I: IntoIterator<Item=(ParaId, Message)>>(
&self,
_last_head: HeadData,
ingress: I,
) -> Result<(BlockData, HeadData, Extrinsic), InvalidHead> {
// send messages right back.
Ok((
BlockData(vec![1, 2, 3, 4, 5,]),
HeadData(vec![9, 9, 9]),
Extrinsic {
outgoing_messages: ingress.into_iter().map(|(id, msg)| OutgoingMessage {
target: id,
data: msg.0,
}).collect(),
}
))
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
fn collates_correct_queue_roots() {
let mut context = DummyRelayChainContext::default();
let id = ParaId::from(100);
let a = ParaId::from(123);
let b = ParaId::from(456);
let messages_from_a = vec![
Message(vec![1, 1, 1]),
Message(b"helloworld".to_vec()),
];
let messages_from_b = vec![
Message(b"dogglesworth".to_vec()),
Message(b"buy_1_chili_con_carne_here_is_my_cash".to_vec()),
];
let root_a = ::polkadot_validation::message_queue_root(
messages_from_a.iter().map(|msg| &msg.0)
);
let root_b = ::polkadot_validation::message_queue_root(
messages_from_b.iter().map(|msg| &msg.0)
);
context.ingress.insert(id, ConsolidatedIngress(vec![
(b, messages_from_b),
(a, messages_from_a),
]));
let collation = collate(
id,
HeadData(vec![5]),
context.clone(),
DummyParachainContext,
AuthorityKeyring::Alice.pair().into(),
).wait().unwrap();
// ascending order by root.
assert_eq!(collation.receipt.egress_queue_roots, vec![(a, root_a), (b, root_b)]);