Newer
Older
// Copyright 2017-2020 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
//! Main parachains logic. For now this is just the determination of which validators do what.
use sp_std::prelude::*;
use sp_std::result;
use codec::{Decode, Encode};
use sp_runtime::{
KeyTypeId, Perbill, RuntimeDebug,
traits::{
Hash as HashT, BlakeTwo256, Saturating, One, Dispatchable,
AccountIdConversion, BadOrigin, Convert, SignedExtension, AppVerify,
},
transaction_validity::{TransactionValidityError, ValidTransaction, TransactionValidity},
};
use sp_staking::{
SessionIndex,
offence::{ReportOffence, Offence, Kind},
};
use frame_support::{
traits::KeyOwnerProofSystem,
dispatch::{IsSubType},

thiolliere
committed
weights::{DispatchInfo, SimpleDispatchInfo, Weight, WeighData},
parachain::{
self, Id as ParaId, Chain, DutyRoster, AttestedCandidate, Statement, ParachainDispatchOrigin,
UpwardMessage, ValidatorId, ActiveParas, CollatorId, Retriable, OmittedValidationData,
CandidateReceipt, GlobalValidationSchedule, AbridgedCandidateReceipt,
LocalValidationData, ValidityAttestation, NEW_HEADS_IDENTIFIER, PARACHAIN_KEY_TYPE_ID,
ValidatorSignature, SigningContext,
Parameter, dispatch::DispatchResult, decl_storage, decl_module, decl_error, ensure,
traits::{Currency, Get, WithdrawReason, ExistenceRequirement, Randomness},
use sp_runtime::transaction_validity::InvalidTransaction;
use inherents::{ProvideInherent, InherentData, MakeFatalError, InherentIdentifier};
use system::{ensure_none, ensure_signed};
use crate::attestations::{self, IncludedBlocks};
// ranges for iteration of general block number don't work, so this
// is a utility to get around that.
struct BlockNumberRange<N> {
low: N,
high: N,
}
impl<N: Saturating + One + PartialOrd + PartialEq + Clone> Iterator for BlockNumberRange<N> {
type Item = N;
fn next(&mut self) -> Option<N> {
if self.low >= self.high {
return None
}
let item = self.low.clone();
self.low = self.low.clone().saturating_add(One::one());
Some(item)
}
}
// wrapper trait because an associated type of `Currency<Self::AccountId,Balance=Balance>`
// doesn't work.`
pub trait ParachainCurrency<AccountId> {
fn free_balance(para_id: ParaId) -> Balance;
fn deduct(para_id: ParaId, amount: Balance) -> DispatchResult;
}
impl<AccountId, T: Currency<AccountId>> ParachainCurrency<AccountId> for T where
T::Balance: From<Balance> + Into<Balance>,
ParaId: AccountIdConversion<AccountId>,
{
fn free_balance(para_id: ParaId) -> Balance {
let para_account = para_id.into_account();
T::free_balance(¶_account).into()
}
fn deduct(para_id: ParaId, amount: Balance) -> DispatchResult {
let para_account = para_id.into_account();
// burn the fee.
let _ = T::withdraw(
¶_account,
amount.into(),
ExistenceRequirement::KeepAlive,
)?;
Ok(())
}
}
/// Interface to the persistent (stash) identities of the current validators.
pub struct ValidatorIdentities<T>(sp_std::marker::PhantomData<T>);
/// A structure used to report conflicting votes by validators.
///
/// It is generic over two parameters:
/// `Proof` - proof of historical ownership of a key by some validator.
/// `Hash` - a type of a hash used in the runtime.
#[derive(RuntimeDebug, Encode, Decode)]
#[derive(Clone, Eq, PartialEq)]
pub struct DoubleVoteReport<Proof> {
/// Identity of the double-voter.
pub identity: ValidatorId,
/// First vote of the double-vote.
pub first: (Statement, ValidatorSignature),
/// Second vote of the double-vote.
pub second: (Statement, ValidatorSignature),
/// Proof that the validator with `identity` id was actually a validator at `parent_hash`.
pub proof: Proof,
/// A `SigningContext` with a session and a parent hash of the moment this offence was commited.
pub signing_context: SigningContext,
impl<Proof: Parameter + GetSessionNumber> DoubleVoteReport<Proof> {
fn verify<T: Trait<Proof = Proof>>(
&self,
) -> Result<(), DoubleVoteValidityError> {
let first = self.first.clone();
let second = self.second.clone();
let id = self.identity.encode();
T::KeyOwnerProofSystem::check_proof((PARACHAIN_KEY_TYPE_ID, id), self.proof.clone())
.ok_or(DoubleVoteValidityError::InvalidProof)?;
if self.proof.session() != self.signing_context.session_index {
return Err(DoubleVoteValidityError::InvalidReport);
}
// Check signatures.
Self::verify_vote(
&first,
&self.signing_context,
&self.identity,
)?;
Self::verify_vote(
&second,
&self.signing_context,
&self.identity,
)?;
match (&first.0, &second.0) {
// If issuing a `Candidate` message on a parachain block, neither a `Valid` or
// `Invalid` vote cannot be issued on that parachain block, as the `Candidate`
// message is an implicit validity vote.
(Statement::Candidate(candidate_hash), Statement::Valid(hash)) |
(Statement::Candidate(candidate_hash), Statement::Invalid(hash)) |
(Statement::Valid(hash), Statement::Candidate(candidate_hash)) |
(Statement::Invalid(hash), Statement::Candidate(candidate_hash))
if *candidate_hash == *hash => {},
// Otherwise, it is illegal to cast both a `Valid` and
// `Invalid` vote on a given parachain block.
(Statement::Valid(hash_1), Statement::Invalid(hash_2)) |
(Statement::Invalid(hash_1), Statement::Valid(hash_2))
if *hash_1 == *hash_2 => {},
_ => {
return Err(DoubleVoteValidityError::NotDoubleVote);
}
}
Ok(())
}
fn verify_vote(
vote: &(Statement, ValidatorSignature),
signing_context: &SigningContext,
authority: &ValidatorId,
) -> Result<(), DoubleVoteValidityError> {
let payload = localized_payload(vote.0.clone(), signing_context);
if !vote.1.verify(&payload[..], authority) {
return Err(DoubleVoteValidityError::InvalidSignature);
}
Ok(())
}
}
impl<T: session::Trait> Get<Vec<T::ValidatorId>> for ValidatorIdentities<T> {
fn get() -> Vec<T::ValidatorId> {
<session::Module<T>>::validators()
}
}
/// A trait to get a session number the `Proof` belongs to.
pub trait GetSessionNumber {
fn session(&self) -> SessionIndex;
}
impl GetSessionNumber for session::historical::Proof {
fn session(&self) -> SessionIndex {
self.session()
}
}
pub trait Trait: attestations::Trait + session::historical::Trait {
/// The outer origin type.
type Origin: From<Origin> + From<system::RawOrigin<Self::AccountId>>;
/// The outer call dispatch type.
type Call: Parameter + Dispatchable<Origin=<Self as Trait>::Origin>;
/// Some way of interacting with balances for fees.
type ParachainCurrency: ParachainCurrency<Self::AccountId>;
/// Something that provides randomness in the runtime.
type Randomness: Randomness<Self::Hash>;
/// Means to determine what the current set of active parachains are.
type ActiveParachains: ActiveParas;
/// The way that we are able to register parachains.
type Registrar: Registrar<Self::AccountId>;
/// Maximum code size for parachains, in bytes. Note that this is not
/// the entire storage burden of the parachain, as old code is stored for
/// `SlashPeriod` blocks.
type MaxCodeSize: Get<u32>;
/// Max head data size.
type MaxHeadDataSize: Get<u32>;
/// Proof type.
///
/// We need this type to bind the `KeyOwnerProofSystem::Proof` to necessary bounds.
/// As soon as https://rust-lang.github.io/rfcs/2289-associated-type-bounds.html
/// gets in this can be simplified.
type Proof: Parameter + GetSessionNumber;
/// Compute and check proofs of historical key owners.
type KeyOwnerProofSystem: KeyOwnerProofSystem<
(KeyTypeId, Vec<u8>),
Proof = Self::Proof,
IdentificationTuple = Self::IdentificationTuple,
>;
/// An identification tuple type bound to `Parameter`.
type IdentificationTuple: Parameter;
/// Report an offence.
type ReportOffence: ReportOffence<
Self::AccountId,
Self::IdentificationTuple,
DoubleVoteOffence<Self::IdentificationTuple>
>;
/// A type that converts the opaque hash type to exact one.
type BlockHashConversion: Convert<Self::Hash, primitives::Hash>;
}
/// Origin for the parachains module.
#[derive(PartialEq, Eq, Clone)]
#[cfg_attr(feature = "std", derive(Debug))]
pub enum Origin {
/// It comes from a parachain.
Parachain(ParaId),
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
/// An offence that is filed if the validator has submitted a double vote.
#[derive(RuntimeDebug)]
#[cfg_attr(feature = "std", derive(Clone, PartialEq, Eq))]
pub struct DoubleVoteOffence<Offender> {
/// The current session index in which we report a validator.
session_index: SessionIndex,
/// The size of the validator set in current session/era.
validator_set_count: u32,
/// An offender that has submitted two conflicting votes.
offender: Offender,
}
impl<Offender: Clone> Offence<Offender> for DoubleVoteOffence<Offender> {
const ID: Kind = *b"para:double-vote";
type TimeSlot = SessionIndex;
fn offenders(&self) -> Vec<Offender> {
vec![self.offender.clone()]
}
fn session_index(&self) -> SessionIndex {
self.session_index
}
fn validator_set_count(&self) -> u32 {
self.validator_set_count
}
fn time_slot(&self) -> Self::TimeSlot {
self.session_index
}
fn slash_fraction(_offenders_count: u32, _validator_set_count: u32) -> Perbill {
// Slash 100%.
Perbill::from_percent(100)
}
}
/// Total number of individual messages allowed in the parachain -> relay-chain message queue.
const MAX_QUEUE_COUNT: usize = 100;
/// Total size of messages allowed in the parachain -> relay-chain message queue before which no
/// further messages may be added to it. If it exceeds this then the queue may contain only a
/// single message.
const WATERMARK_QUEUE_SIZE: usize = 20000;
trait Store for Module<T: Trait> as Parachains
{
/// All authorities' keys at the moment.
pub Authorities get(fn authorities): Vec<ValidatorId>;
/// The parachains registered at present.
pub Code get(fn parachain_code): map hasher(twox_64_concat) ParaId => Option<Vec<u8>>;
/// The heads of the parachains registered at present.
pub Heads get(fn parachain_head): map hasher(twox_64_concat) ParaId => Option<Vec<u8>>;
/// Messages ready to be dispatched onto the relay chain. It is subject to
/// `MAX_MESSAGE_COUNT` and `WATERMARK_MESSAGE_SIZE`.
pub RelayDispatchQueue: map hasher(twox_64_concat) ParaId => Vec<UpwardMessage>;
/// Size of the dispatch queues. Separated from actual data in order to avoid costly
/// decoding when checking receipt validity. First item in tuple is the count of messages
/// second if the total length (in bytes) of the message payloads.
pub RelayDispatchQueueSize: map hasher(twox_64_concat) ParaId => (u32, u32);
/// The ordered list of ParaIds that have a `RelayDispatchQueue` entry.
NeedsDispatch: Vec<ParaId>;
/// `Some` if the parachain heads get updated in this block, along with the parachain IDs
/// that did update. Ordered in the same way as `registrar::Active` (i.e. by ParaId).
/// `None` if not yet updated.
add_extra_genesis {
config(authorities): Vec<ValidatorId>;
build(|config| Module::<T>::initialize_authorities(&config.authorities))
}
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
decl_error! {
pub enum Error for Module<T: Trait> {
/// Parachain heads must be updated only once in the block.
TooManyHeadUpdates,
/// Too many parachain candidates.
TooManyParaCandidates,
/// Proposed heads must be ascending order by parachain ID without duplicate.
HeadsOutOfOrder,
/// Candidate is for an unregistered parachain.
UnregisteredPara,
/// Invalid collator.
InvalidCollator,
/// The message queue is full. Messages will be added when there is space.
QueueFull,
/// The message origin is invalid.
InvalidMessageOrigin,
/// No validator group for parachain.
NoValidatorGroup,
/// Not enough validity votes for candidate.
NotEnoughValidityVotes,
/// The number of attestations exceeds the number of authorities.
VotesExceedsAuthorities,
/// Attesting validator not on this chain's validation duty.
WrongValidatorAttesting,
/// Invalid signature from attester.
InvalidSignature,
/// Extra untagged validity votes along with candidate.
UntaggedVotes,
/// Wrong parent head for parachain receipt.
ParentMismatch,
/// Head data was too large.
HeadDataTooLarge,
/// Para does not have enough balance to pay fees.
CannotPayFees,
/// Unexpected relay-parent for a candidate receipt.
UnexpectedRelayParent,
decl_module! {
/// Parachains module.
pub struct Module<T: Trait> for enum Call where origin: <T as system::Trait>::Origin {
type Error = Error<T>;
/// Provide candidate receipts for parachains, in ascending order by id.
#[weight = SimpleDispatchInfo::FixedNormal(1_000_000)]
pub fn set_heads(origin, heads: Vec<AttestedCandidate>) -> DispatchResult {
ensure!(!<DidUpdate>::exists(), Error::<T>::TooManyHeadUpdates);
let active_parachains = Self::active_parachains();
let parachain_count = active_parachains.len();
ensure!(heads.len() <= parachain_count, Error::<T>::TooManyParaCandidates);
let mut proceeded = Vec::with_capacity(heads.len());
let schedule = GlobalValidationSchedule {
max_code_size: T::MaxCodeSize::get(),
max_head_data_size: T::MaxHeadDataSize::get(),
};
if !active_parachains.is_empty() {
// perform integrity checks before writing to storage.
{
let mut last_id = None;
let mut iter = active_parachains.iter();
for head in &heads {
let id = head.parachain_index();
// proposed heads must be ascending order by parachain ID without duplicate.
ensure!(
last_id.as_ref().map_or(true, |x| x < &id),
Error::<T>::HeadsOutOfOrder
);
// must be unknown since active parachains are always sorted.
let (_, maybe_required_collator) = iter.find(|para| para.0 == id)
.ok_or(Error::<T>::UnregisteredPara)?;
if let Some((required_collator, _)) = maybe_required_collator {
ensure!(required_collator == &head.candidate.collator, Error::<T>::InvalidCollator);
Self::check_upward_messages(
id,
&head.candidate.commitments.upward_messages,
MAX_QUEUE_COUNT,
WATERMARK_QUEUE_SIZE,
)?;
let id = head.parachain_index();
proceeded.push(id);
last_id = Some(id);
let para_blocks = Self::check_candidates(
&schedule,
&heads,
&active_parachains,
)?;
<attestations::Module<T>>::note_included(&heads, para_blocks);
Self::update_routing(
// note: we dispatch new messages _after_ the call to `check_candidates`
// which deducts any fees. if that were not the case, an upward message
// could be dispatched and spend money that invalidated a candidate.
Self::dispatch_upward_messages(
MAX_QUEUE_COUNT,
WATERMARK_QUEUE_SIZE,
Self::dispatch_message,
);
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
/// Provide a proof that some validator has commited a double-vote.
///
/// The weight is 0; in order to avoid DoS a `SignedExtension` validation
/// is implemented.
#[weight = SimpleDispatchInfo::FixedNormal(0)]
pub fn report_double_vote(
origin,
report: DoubleVoteReport<
<T::KeyOwnerProofSystem as KeyOwnerProofSystem<(KeyTypeId, Vec<u8>)>>::Proof,
>,
) -> DispatchResult {
let reporter = ensure_signed(origin)?;
let validators = <session::Module<T>>::validators();
let validator_set_count = validators.len() as u32;
let session_index = report.proof.session();
let DoubleVoteReport { identity, proof, .. } = report;
// We have already checked this proof in `SignedExtension`, but we need
// this here to get the full identification of the offender.
let offender = T::KeyOwnerProofSystem::check_proof(
(PARACHAIN_KEY_TYPE_ID, identity.encode()),
proof,
).ok_or("Invalid/outdated key ownership proof.")?;
let offence = DoubleVoteOffence {
session_index,
validator_set_count,
offender,
};
// Checks if this is actually a double vote are
// implemented in `ValidateDoubleVoteReports::validete`.
T::ReportOffence::report_offence(vec![reporter], offence)
.map_err(|_| "Failed to report offence")?;
Ok(())
}

thiolliere
committed
fn on_initialize() -> Weight {

thiolliere
committed
SimpleDispatchInfo::default().weigh_data(())
fn on_finalize() {
assert!(<Self as Store>::DidUpdate::exists(), "Parachain heads must be updated once in the block");
fn majority_of(list_len: usize) -> usize {
list_len / 2 + list_len % 2
}
fn localized_payload(
statement: Statement,
signing_context: &SigningContext,
) -> Vec<u8> {
let mut encoded = statement.encode();
signing_context.using_encoded(|s| encoded.extend(s));
encoded
}
impl<T: Trait> Module<T> {
/// Initialize the state of a new parachain/parathread.
pub fn initialize_para(
id: ParaId,
code: Vec<u8>,
initial_head_data: Vec<u8>,
) {
<Code>::insert(id, code);
<Heads>::insert(id, initial_head_data);
}
pub fn cleanup_para(
id: ParaId,
) {
<Code>::remove(id);
<Heads>::remove(id);
}
/// Get a `SigningContext` with a current `SessionIndex` and parent hash.
pub fn signing_context() -> SigningContext {
let session_index = <session::Module<T>>::current_index();
let parent_hash = <system::Module<T>>::parent_hash();
SigningContext {
session_index,
parent_hash: T::BlockHashConversion::convert(parent_hash),
}
}
/// Dispatch some messages from a parachain.
fn dispatch_message(
id: ParaId,
origin: ParachainDispatchOrigin,
data: &[u8],
) {
if let Ok(message_call) = <T as Trait>::Call::decode(&mut &data[..]) {
let origin: <T as Trait>::Origin = match origin {
ParachainDispatchOrigin::Signed =>
system::RawOrigin::Signed(id.into_account()).into(),
ParachainDispatchOrigin::Parachain =>
Origin::Parachain(id).into(),
ParachainDispatchOrigin::Root =>
system::RawOrigin::Root.into(),
};
let _ok = message_call.dispatch(origin).is_ok();
// Not much to do with the result as it is. It's up to the parachain to ensure that the
// message makes sense.
}
}
/// Ensure all is well with the upward messages.
fn check_upward_messages(
id: ParaId,
upward_messages: &[UpwardMessage],
max_queue_count: usize,
watermark_queue_size: usize,
// Either there are no more messages to add...
if !upward_messages.is_empty() {
let (count, size) = <RelayDispatchQueueSize>::get(id);
ensure!(
// ...or we are appending one message onto an empty queue...
upward_messages.len() + count as usize == 1
// ...or...
|| (
// ...the total messages in the queue ends up being no greater than the
// limit...
upward_messages.len() + count as usize <= max_queue_count
&&
// ...and the total size of the payloads in the queue ends up being no
// greater than the limit.
upward_messages.iter()
.fold(size as usize, |a, x| a + x.data.len())
<= watermark_queue_size
),
if !id.is_system() {
for m in upward_messages.iter() {
ensure!(m.origin != ParachainDispatchOrigin::Root, Error::<T>::InvalidMessageOrigin);
/// Update routing information from the parachain heads. This queues upwards
/// messages to the relay chain as well.
fn update_routing(
heads: &[AttestedCandidate],
) {
// we sort them in order to provide a fast lookup to ensure we can avoid duplicates in the
// needs_dispatch queue.
let mut ordered_needs_dispatch = NeedsDispatch::get();
for head in heads.iter() {
let id = head.parachain_index();
// Queue up upwards messages (from parachains to relay chain).
Self::queue_upward_messages(
id,
&head.candidate.commitments.upward_messages,
NeedsDispatch::put(ordered_needs_dispatch);
/// Place any new upward messages into our queue for later dispatch.
///
/// `ordered_needs_dispatch` is mutated to ensure it reflects the new value of
/// `RelayDispatchQueueSize`. It is up to the caller to guarantee that it gets written into
/// storage after this call.
fn queue_upward_messages(
id: ParaId,
upward_messages: &[UpwardMessage],
ordered_needs_dispatch: &mut Vec<ParaId>,
) {
RelayDispatchQueueSize::mutate(id, |&mut(ref mut count, ref mut len)| {
*count += upward_messages.len() as u32;
*len += upward_messages.iter()
.fold(0, |a, x| a + x.data.len()) as u32;
});
// Should never be able to fail assuming our state is uncorrupted, but best not
// to panic, even if it does.
let _ = RelayDispatchQueue::append(id, upward_messages);
if let Err(i) = ordered_needs_dispatch.binary_search(&id) {
// same.
ordered_needs_dispatch.insert(i, id);
} else {
sp_runtime::print("ordered_needs_dispatch contains id?!");
/// Simple FIFO dispatcher. This must be called after parachain fees are checked,
/// as dispatched messages may spend parachain funds.
fn dispatch_upward_messages(
max_queue_count: usize,
watermark_queue_size: usize,
mut dispatch_message: impl FnMut(ParaId, ParachainDispatchOrigin, &[u8]),
) {
let queueds = NeedsDispatch::get();
let mut drained_count = 0usize;
let mut dispatched_count = 0usize;
let mut dispatched_size = 0usize;
for id in queueds.iter() {
drained_count += 1;
let (count, size) = <RelayDispatchQueueSize>::get(id);
let count = count as usize;
let size = size as usize;
if dispatched_count == 0 || (
dispatched_count + count <= max_queue_count
&& dispatched_size + size <= watermark_queue_size
) {
if count > 0 {
// still dispatching messages...
RelayDispatchQueueSize::remove(id);
let messages = RelayDispatchQueue::take(id);
for UpwardMessage { origin, data } in messages.into_iter() {
dispatch_message(*id, origin, &data);
}
dispatched_count += count;
dispatched_size += size;
if dispatched_count >= max_queue_count
|| dispatched_size >= watermark_queue_size
{
break
}
}
}
}
NeedsDispatch::put(&queueds[drained_count..]);
/// Calculate the current block's duty roster using system's random seed.
/// Returns the duty roster along with the random seed.
pub fn calculate_duty_roster() -> (DutyRoster, [u8; 32]) {
let parachains = Self::active_parachains();
let parachain_count = parachains.len();
// TODO: use decode length. substrate #2794
let validator_count = Self::authorities().len();
let validators_per_parachain =
if parachain_count == 0 {
0
} else {
(validator_count - 1) / parachain_count
};
let mut roles_val = (0..validator_count).map(|i| match i {
i if i < parachain_count * validators_per_parachain => {
let idx = i / validators_per_parachain;
Chain::Parachain(parachains[idx].0.clone())
_ => Chain::Relay,
}).collect::<Vec<_>>();
let mut seed = {
let phrase = b"validator_role_pairs";
let seed = T::Randomness::random(&phrase[..]);
let seed_len = seed.as_ref().len();
let needed_bytes = validator_count * 4;
// hash only the needed bits of the random seed.
// if earlier bits are influencable, they will not factor into
// the seed used here.
let seed_off = if needed_bytes >= seed_len {
0
} else {
seed_len - needed_bytes
};
BlakeTwo256::hash(&seed.as_ref()[seed_off..])
};
let orig_seed = seed.clone().to_fixed_bytes();
for i in 0..(validator_count.saturating_sub(1)) {
// 4 bytes of entropy used per cycle, 32 bytes entropy per hash
let offset = (i * 4 % 32) as usize;
// number of roles remaining to select from.
let remaining = sp_std::cmp::max(1, (validator_count - i) as usize);
let val_index = u32::decode(&mut &seed[offset..offset + 4])
.expect("using 4 bytes for a 32-bit quantity") as usize % remaining;
if offset == 28 {
// into the last 4 bytes - rehash to gather new entropy
seed = BlakeTwo256::hash(seed.as_ref());
}
// exchange last item with randomly chosen first.
roles_val.swap(remaining - 1, val_index);
}
(DutyRoster { validator_duty: roles_val, }, orig_seed)
/// Get the global validation schedule for all parachains.
pub fn global_validation_schedule() -> GlobalValidationSchedule {
GlobalValidationSchedule {
max_code_size: T::MaxCodeSize::get(),
max_head_data_size: T::MaxHeadDataSize::get(),
}
}
/// Get the local validation schedule for a particular parachain.
pub fn local_validation_data(id: ¶chain::Id) -> Option<LocalValidationData> {
Self::parachain_head(id).map(|parent_head| LocalValidationData {
parent_head: primitives::parachain::HeadData(parent_head),
balance: T::ParachainCurrency::free_balance(*id),
/// Get the currently active set of parachains.
pub fn active_parachains() -> Vec<(ParaId, Option<(CollatorId, Retriable)>)> {
T::ActiveParachains::active_paras()
}
// check the attestations on these candidates. The candidates should have been checked
// that each candidates' chain ID is valid.
schedule: &GlobalValidationSchedule,
attested_candidates: &[AttestedCandidate],
active_parachains: &[(ParaId, Option<(CollatorId, Retriable)>)]
) -> sp_std::result::Result<IncludedBlocks<T>, sp_runtime::DispatchError>
// returns groups of slices that have the same chain ID.
// assumes the inner slice is sorted by id.
struct GroupedDutyIter<'a> {
next_idx: usize,
}
impl<'a> GroupedDutyIter<'a> {
fn new(inner: &'a [(usize, ParaId)]) -> Self {
GroupedDutyIter { next_idx: 0, inner }
}
fn group_for(&mut self, wanted_id: ParaId) -> Option<&'a [(usize, ParaId)]> {
while let Some((id, keys)) = self.next() {
if wanted_id == id {
return Some(keys)
}
}
None
}
}
impl<'a> Iterator for GroupedDutyIter<'a> {
type Item = (ParaId, &'a [(usize, ParaId)]);
fn next(&mut self) -> Option<Self::Item> {
if self.next_idx == self.inner.len() { return None }
let start_idx = self.next_idx;
self.next_idx += 1;
let start_id = self.inner[start_idx].1;
while self.inner.get(self.next_idx).map_or(false, |&(_, ref id)| id == &start_id) {
self.next_idx += 1;
}
Some((start_id, &self.inner[start_idx..self.next_idx]))
}
}
let authorities = Self::authorities();
let (duty_roster, random_seed) = Self::calculate_duty_roster();
// convert a duty roster, which is originally a Vec<Chain>, where each
// item corresponds to the same position in the session keys, into
// a list containing (index, parachain duty) where indices are into the session keys.
// this list is sorted ascending by parachain duty, just like the
// parachain candidates are.
let make_sorted_duties = |duty: &[Chain]| {
let mut sorted_duties = Vec::with_capacity(duty.len());
for (val_idx, duty) in duty.iter().enumerate() {
let id = match duty {
Chain::Relay => continue,
Chain::Parachain(id) => id,
};
let idx = sorted_duties.binary_search_by_key(&id, |&(_, ref id)| id)
.unwrap_or_else(|idx| idx);
sorted_duties.insert(idx, (val_idx, *id));
}
sorted_duties
};
// computes the omitted validation data for a particular parachain.
let full_candidate = |abridged: &AbridgedCandidateReceipt|
-> sp_std::result::Result<CandidateReceipt, sp_runtime::DispatchError>
{
let para_id = abridged.parachain_index;
let parent_head = match Self::parachain_head(¶_id)
.map(primitives::parachain::HeadData)
{
Some(p) => p,
None => Err(Error::<T>::ParentMismatch)?,
};
let omitted = OmittedValidationData {
global_validation: schedule.clone(),
local_validation: LocalValidationData {
parent_head,
balance: T::ParachainCurrency::free_balance(para_id),
},
};
Ok(abridged.clone().complete(omitted))
};
let sorted_validators = make_sorted_duties(&duty_roster.validator_duty);
let parent_hash = <system::Module<T>>::parent_hash();
let signing_context = Self::signing_context();
let localized_payload = |statement: Statement| localized_payload(statement, &signing_context);
let mut validator_groups = GroupedDutyIter::new(&sorted_validators[..]);
let mut para_block_hashes = Vec::new();
for candidate in attested_candidates {
let para_id = candidate.parachain_index();
let validator_group = validator_groups.group_for(para_id)
.ok_or(Error::<T>::NoValidatorGroup)?;
// NOTE: when changing this to allow older blocks,
// care must be taken in the availability store pruning to ensure that
// data is stored correctly. A block containing a candidate C can be
// orphaned before a block containing C is finalized. Care must be taken
// not to prune the data for C simply because an orphaned block contained
// it.
candidate.candidate().relay_parent.as_ref() == parent_hash.as_ref(),
Error::<T>::UnexpectedRelayParent,
ensure!(
candidate.validity_votes.len() >= majority_of(validator_group.len()),
Error::<T>::NotEnoughValidityVotes,
ensure!(
candidate.validity_votes.len() <= authorities.len(),
Error::<T>::VotesExceedsAuthorities,
schedule.max_head_data_size >= candidate.candidate().head_data.0.len() as _,
Error::<T>::HeadDataTooLarge,
);
let full_candidate = full_candidate(candidate.candidate())?;
let fees = full_candidate.commitments.fees;
ensure!(
full_candidate.local_validation.balance >= full_candidate.commitments.fees,
Error::<T>::CannotPayFees,
);
T::ParachainCurrency::deduct(para_id, fees)?;
let candidate_hash = candidate.candidate().hash();
let mut encoded_implicit = None;
let mut encoded_explicit = None;
let mut expected_votes_len = 0;
for (vote_index, (auth_index, _)) in candidate.validator_indices
let validity_attestation = match candidate.validity_votes.get(vote_index) {
None => Err(Error::<T>::NotEnoughValidityVotes)?,
Some(v) => {
expected_votes_len = vote_index + 1;
v
}
};
if validator_group.iter().find(|&(idx, _)| *idx == auth_index).is_none() {
Err(Error::<T>::WrongValidatorAttesting)?
}
let (payload, sig) = match validity_attestation {
ValidityAttestation::Implicit(sig) => {
let payload = encoded_implicit.get_or_insert_with(|| localized_payload(
Statement::Candidate(candidate_hash),
));
(payload, sig)
}
ValidityAttestation::Explicit(sig) => {
let payload = encoded_explicit.get_or_insert_with(|| localized_payload(
Statement::Valid(candidate_hash),
));
(payload, sig)
}
};
ensure!(
sig.verify(&payload[..], &authorities[auth_index]),