lib.rs 13.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
// Copyright 2018 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.

// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Polkadot.  If not, see <http://www.gnu.org/licenses/>.

//! As part of Polkadot's availability system, certain pieces of data
//! for each block are required to be kept available.
//!
//! The way we accomplish this is by erasure coding the data into n pieces
//! and constructing a merkle root of the data.
//!
//! Each of n validators stores their piece of data. We assume n=3f+k, k < 3.
Black3HDF's avatar
Black3HDF committed
24
//! f is the maximum number of faulty validators in the system.
25
26
//! The data is coded so any f+1 chunks can be used to reconstruct the full data.

27
use codec::{Encode, Decode};
28
29
use reed_solomon::galois_16::{self, ReedSolomon};
use primitives::{Hash as H256, BlakeTwo256, HashT};
30
use primitives::parachain::{BlockData, OutgoingMessages};
31
use substrate_primitives::Blake2Hasher;
32
use trie::{EMPTY_PREFIX, MemoryDB, Trie, TrieMut, trie_types::{TrieDBMut, TrieDB}};
33
34
35
36
37
38
39
40
41

use self::wrapped_shard::WrappedShard;

mod wrapped_shard;

// we are limited to the field order of GF(2^16), which is 65536
const MAX_VALIDATORS: usize = <galois_16::Field as reed_solomon::Field>::ORDER;

/// Errors in erasure coding.
42
#[derive(Debug, Clone, PartialEq)]
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
pub enum Error {
	/// Returned when there are too many validators.
	TooManyValidators,
	/// Cannot encode something for no validators
	EmptyValidators,
	/// Cannot reconstruct: wrong number of validators.
	WrongValidatorCount,
	/// Not enough chunks present.
	NotEnoughChunks,
	/// Too many chunks present.
	TooManyChunks,
	/// Chunks not of uniform length or the chunks are empty.
	NonUniformChunks,
	/// An uneven byte-length of a shard is not valid for GF(2^16) encoding.
	UnevenLength,
	/// Chunk index out of bounds.
	ChunkIndexOutOfBounds(usize, usize),
	/// Bad payload in reconstructed bytes.
	BadPayload,
	/// Invalid branch proof.
	InvalidBranchProof,
	/// Branch out of bounds.
	BranchOutOfBounds,
}

68
#[derive(Debug, PartialEq)]
69
70
71
72
73
74
75
76
struct CodeParams {
	data_shards: usize,
	parity_shards: usize,
}

impl CodeParams {
	// the shard length needed for a payload with initial size `base_len`.
	fn shard_len(&self, base_len: usize) -> usize {
77
78
79
80
81
82
83
		// how many bytes we actually need.
		let needed_shard_len = base_len / self.data_shards
			+ (base_len % self.data_shards != 0) as usize;

		// round up to next even number
		// (no actual space overhead since we are working in GF(2^16)).
		needed_shard_len + needed_shard_len % 2
84
85
86
87
88
	}

	fn make_shards_for(&self, payload: &[u8]) -> Vec<WrappedShard> {
		let shard_len = self.shard_len(payload.len());
		let mut shards = vec![
89
			WrappedShard::new(vec![0; shard_len]);
90
91
92
93
94
95
			self.data_shards + self.parity_shards
		];

		for (data_chunk, blank_shard) in payload.chunks(shard_len).zip(&mut shards) {
			// fill the empty shards with the corresponding piece of the payload,
			// zero-padded to fit in the shards.
96
97
			let len = std::cmp::min(shard_len, data_chunk.len());
			let blank_shard: &mut [u8] = blank_shard.as_mut();
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
			blank_shard[..len].copy_from_slice(&data_chunk[..len]);
		}

		shards
	}

	// make a reed-solomon instance.
	fn make_encoder(&self) -> ReedSolomon {
		ReedSolomon::new(self.data_shards, self.parity_shards)
			.expect("this struct is not created with invalid shard number; qed")
	}
}

fn code_params(n_validators: usize) -> Result<CodeParams, Error> {
	if n_validators > MAX_VALIDATORS { return Err(Error::TooManyValidators) }
	if n_validators == 0 { return Err(Error::EmptyValidators) }

	let n_faulty = n_validators.saturating_sub(1) / 3;
	let n_good = n_validators - n_faulty;

	Ok(CodeParams {
		data_shards: n_faulty + 1,
		parity_shards: n_good - 1,
	})
}

/// Obtain erasure-coded chunks, one for each validator.
///
126
/// Works only up to 65536 validators, and `n_validators` must be non-zero.
127
pub fn obtain_chunks(n_validators: usize, block_data: &BlockData, outgoing: &OutgoingMessages)
128
129
130
	-> Result<Vec<Vec<u8>>, Error>
{
	let params  = code_params(n_validators)?;
131
	let encoded = (block_data, outgoing).encode();
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

	if encoded.is_empty() {
		return Err(Error::BadPayload);
	}

	let mut shards = params.make_shards_for(&encoded[..]);

	params.make_encoder().encode(&mut shards[..])
		.expect("Payload non-empty, shard sizes are uniform, and validator numbers checked; qed");

	Ok(shards.into_iter().map(|w| w.into_inner()).collect())
}

/// Reconstruct the block data from a set of chunks.
///
/// Provide an iterator containing chunk data and the corresponding index.
/// The indices of the present chunks must be indicated. If too few chunks
/// are provided, recovery is not possible.
///
151
/// Works only up to 65536 validators, and `n_validators` must be non-zero.
152
pub fn reconstruct<'a, I: 'a>(n_validators: usize, chunks: I)
153
	-> Result<(BlockData, OutgoingMessages), Error>
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
	where I: IntoIterator<Item=(&'a [u8], usize)>
{
	let params = code_params(n_validators)?;
	let mut shards: Vec<Option<WrappedShard>> = vec![None; n_validators];
	let mut shard_len = None;
	for (chunk_data, chunk_idx) in chunks.into_iter().take(n_validators) {
		if chunk_idx >= n_validators {
			return Err(Error::ChunkIndexOutOfBounds(chunk_idx, n_validators));
		}

		let shard_len = shard_len.get_or_insert_with(|| chunk_data.len());

		if *shard_len % 2 != 0 {
			return Err(Error::UnevenLength);
		}

		if *shard_len != chunk_data.len() || *shard_len == 0 {
			return Err(Error::NonUniformChunks);
		}

		shards[chunk_idx] = Some(WrappedShard::new(chunk_data.to_vec()));
	}

	if let Err(e) = params.make_encoder().reconstruct(&mut shards[..]) {
		match e {
			reed_solomon::Error::TooFewShardsPresent => Err(Error::NotEnoughChunks)?,
			reed_solomon::Error::InvalidShardFlags => Err(Error::WrongValidatorCount)?,
			reed_solomon::Error::TooManyShards => Err(Error::TooManyChunks)?,
			reed_solomon::Error::EmptyShard => panic!("chunks are all non-empty; this is checked above; qed"),
			reed_solomon::Error::IncorrectShardSize => panic!("chunks are all same len; this is checked above; qed"),
			_ => panic!("reed_solomon encoder returns no more variants for this function; qed"),
		}
	}

	// lazily decode from the data shards.
	Decode::decode(&mut ShardInput {
190
		remaining_len: shard_len.map(|s| s * params.data_shards).unwrap_or(0),
191
		cur_shard: None,
192
193
194
195
		shards: shards.iter()
			.map(|x| x.as_ref())
			.take(params.data_shards)
			.map(|x| x.expect("all data shards have been recovered; qed"))
196
			.map(|x| x.as_ref()),
197
	}).or_else(|_| Err(Error::BadPayload))
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
}

/// An iterator that yields merkle branches and chunk data for all chunks to
/// be sent to other validators.
pub struct Branches<'a> {
	trie_storage: MemoryDB<Blake2Hasher>,
	root: H256,
	chunks: Vec<&'a [u8]>,
	current_pos: usize,
}

impl<'a> Branches<'a> {
	/// Get the trie root.
	pub fn root(&self) -> H256 { self.root.clone() }
}

impl<'a> Iterator for Branches<'a> {
	type Item = (Vec<Vec<u8>>, &'a [u8]);

	fn next(&mut self) -> Option<Self::Item> {
		use trie::Recorder;

		let trie = TrieDB::new(&self.trie_storage, &self.root)
			.expect("`Branches` is only created with a valid memorydb that contains all nodes for the trie with given root; qed");

		let mut recorder = Recorder::new();
		let res = (self.current_pos as u32).using_encoded(|s|
			trie.get_with(s, &mut recorder)
		);

		match res.expect("all nodes in trie present; qed") {
			Some(_) => {
				let nodes = recorder.drain().into_iter().map(|r| r.data).collect();
				let chunk = &self.chunks.get(self.current_pos)
					.expect("there is a one-to-one mapping of chunks to valid merkle branches; qed");

				self.current_pos += 1;
				Some((nodes, chunk))
			}
			None => None,
		}
	}
}

/// Construct a trie from chunks of an erasure-coded value. This returns the root hash and an
/// iterator of merkle proofs, one for each validator.
pub fn branches<'a>(chunks: Vec<&'a [u8]>) -> Branches<'a> {
	let mut trie_storage: MemoryDB<Blake2Hasher> = MemoryDB::default();
	let mut root = H256::default();

	// construct trie mapping each chunk's index to its hash.
	{
		let mut trie = TrieDBMut::new(&mut trie_storage, &mut root);
		for (i, &chunk) in chunks.iter().enumerate() {
			(i as u32).using_encoded(|encoded_index| {
				let chunk_hash = BlakeTwo256::hash(chunk);
				trie.insert(encoded_index, chunk_hash.as_ref())
					.expect("a fresh trie stored in memory cannot have errors loading nodes; qed");
			})
		}
	}

	Branches {
		trie_storage,
		root,
		chunks,
		current_pos: 0,
	}
}

Black3HDF's avatar
Black3HDF committed
268
/// Verify a merkle branch, yielding the chunk hash meant to be present at that
269
270
271
272
/// index.
pub fn branch_hash(root: &H256, branch_nodes: &[Vec<u8>], index: usize) -> Result<H256, Error> {
	let mut trie_storage: MemoryDB<Blake2Hasher> = MemoryDB::default();
	for node in branch_nodes.iter() {
273
		(&mut trie_storage as &mut trie::HashDB<_>).insert(EMPTY_PREFIX, node.as_slice());
274
275
276
277
278
279
280
281
	}

	let trie = TrieDB::new(&trie_storage, &root).map_err(|_| Error::InvalidBranchProof)?;
	let res = (index as u32).using_encoded(|key|
		trie.get_with(key, |raw_hash: &[u8]| H256::decode(&mut &raw_hash[..]))
	);

	match res {
282
283
		Ok(Some(Ok(hash))) => Ok(hash),
		Ok(Some(Err(_))) => Err(Error::InvalidBranchProof), // hash failed to decode
284
285
286
287
288
		Ok(None) => Err(Error::BranchOutOfBounds),
		Err(_) => Err(Error::InvalidBranchProof),
	}
}

289
// input for `codec` which draws data from the data shards
290
struct ShardInput<'a, I> {
291
	remaining_len: usize,
292
293
294
295
	shards: I,
	cur_shard: Option<(&'a [u8], usize)>,
}

296
297
298
299
300
301
impl<'a, I: Iterator<Item=&'a [u8]>> codec::Input for ShardInput<'a, I> {
	fn remaining_len(&mut self) -> Result<Option<usize>, codec::Error> {
		Ok(Some(self.remaining_len))
	}

	fn read(&mut self, into: &mut [u8]) -> Result<(), codec::Error> {
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
		let mut read_bytes = 0;

		loop {
			if read_bytes == into.len() { break }

			let cur_shard = self.cur_shard.take().or_else(|| self.shards.next().map(|s| (s, 0)));
			let (active_shard, mut in_shard) = match cur_shard {
				Some((s, i)) => (s, i),
				None => break,
			};

			if in_shard >= active_shard.len() {
				continue;
			}

			let remaining_len_out = into.len() - read_bytes;
			let remaining_len_shard = active_shard.len() - in_shard;

			let write_len = std::cmp::min(remaining_len_out, remaining_len_shard);
			into[read_bytes..][..write_len]
				.copy_from_slice(&active_shard[in_shard..][..write_len]);

			in_shard += write_len;
			read_bytes += write_len;
			self.cur_shard = Some((active_shard, in_shard))
		}

329
330
331
332
333
334
		self.remaining_len -= read_bytes;
		if read_bytes == into.len() {
			Ok(())
		} else {
			Err("slice provided too big for input".into())
		}
335
336
337
338
339
340
341
342
343
344
345
346
	}
}

#[cfg(test)]
mod tests {
	use super::*;

	#[test]
	fn field_order_is_right_size() {
		assert_eq!(MAX_VALIDATORS, 65536);
	}

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
	#[test]
	fn test_code_params() {
		assert_eq!(code_params(0), Err(Error::EmptyValidators));

		assert_eq!(code_params(1), Ok(CodeParams {
			data_shards: 1,
			parity_shards: 0,
		}));

		assert_eq!(code_params(2), Ok(CodeParams {
			data_shards: 1,
			parity_shards: 1,
		}));

		assert_eq!(code_params(3), Ok(CodeParams {
			data_shards: 1,
			parity_shards: 2,
		}));

		assert_eq!(code_params(4), Ok(CodeParams {
			data_shards: 2,
			parity_shards: 2,
		}));

		assert_eq!(code_params(100), Ok(CodeParams {
			data_shards: 34,
			parity_shards: 66,
		}));
	}

	#[test]
	fn shard_len_is_reasonable() {
		let mut params = CodeParams {
			data_shards: 5,
			parity_shards: 0, // doesn't affect calculation.
		};

		assert_eq!(params.shard_len(100), 20);
		assert_eq!(params.shard_len(99), 20);

		// see if it rounds up to 2.
		assert_eq!(params.shard_len(95), 20);
		assert_eq!(params.shard_len(94), 20);

		assert_eq!(params.shard_len(89), 18);

		params.data_shards = 7;

		// needs 3 bytes to fit, rounded up to next even number.
		assert_eq!(params.shard_len(19), 4);
	}

399
400
401
    #[test]
	fn round_trip_block_data() {
		let block_data = BlockData((0..255).collect());
402
		let ex = OutgoingMessages { outgoing_messages: Vec::new() };
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
		let chunks = obtain_chunks(
			10,
			&block_data,
			&ex,
		).unwrap();

		assert_eq!(chunks.len(), 10);

		// any 4 chunks should work.
		let reconstructed = reconstruct(
			10,
			[
				(&*chunks[1], 1),
				(&*chunks[4], 4),
				(&*chunks[6], 6),
				(&*chunks[9], 9),
			].iter().cloned(),
		).unwrap();

		assert_eq!(reconstructed, (block_data, ex));
	}

	#[test]
	fn construct_valid_branches() {
		let block_data = BlockData(vec![2; 256]);
		let chunks = obtain_chunks(
			10,
			&block_data,
431
			&OutgoingMessages { outgoing_messages: Vec::new() },
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
		).unwrap();
		let chunks: Vec<_> = chunks.iter().map(|c| &c[..]).collect();

		assert_eq!(chunks.len(), 10);

		let branches = branches(chunks.clone());
		let root = branches.root();

		let proofs: Vec<_> = branches.map(|(proof, _)| proof).collect();

		assert_eq!(proofs.len(), 10);

		for (i, proof) in proofs.into_iter().enumerate() {
			assert_eq!(branch_hash(&root, &proof, i).unwrap(), BlakeTwo256::hash(chunks[i]));
		}
	}
}