// Copyright 2017-2019 Parity Technologies (UK) Ltd.
// This file is part of Substrate.
// Substrate is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Substrate is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Substrate. If not, see .
//! This is part of the Substrate runtime.
#![warn(missing_docs)]
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(not(feature = "std"), feature(lang_items))]
#![cfg_attr(not(feature = "std"), feature(alloc_error_handler))]
#![cfg_attr(not(feature = "std"), feature(core_intrinsics))]
#![cfg_attr(feature = "std",
doc = "Substrate runtime standard library as compiled when linked with Rust's standard library.")]
#![cfg_attr(not(feature = "std"),
doc = "Substrate's runtime standard library as compiled without Rust's standard library.")]
use rstd::vec::Vec;
#[cfg(feature = "std")]
use rstd::ops::Deref;
#[cfg(feature = "std")]
use primitives::{
crypto::Pair, traits::KeystoreExt, offchain::OffchainExt, hexdisplay::HexDisplay,
storage::ChildStorageKey,
};
use primitives::{
crypto::KeyTypeId, ed25519, sr25519, H256, LogLevel,
offchain::{
Timestamp, HttpRequestId, HttpRequestStatus, HttpError, StorageKind, OpaqueNetworkState,
},
};
#[cfg(feature = "std")]
use trie::{TrieConfiguration, trie_types::Layout};
use runtime_interface::{runtime_interface, Pointer};
use codec::{Encode, Decode};
#[cfg(feature = "std")]
use externalities::{ExternalitiesExt, Externalities};
/// Error verifying ECDSA signature
#[derive(Encode, Decode)]
pub enum EcdsaVerifyError {
/// Incorrect value of R or S
BadRS,
/// Incorrect value of V
BadV,
/// Invalid signature
BadSignature,
}
/// Returns a `ChildStorageKey` if the given `storage_key` slice is a valid storage
/// key or panics otherwise.
///
/// Panicking here is aligned with what the `without_std` environment would do
/// in the case of an invalid child storage key.
#[cfg(feature = "std")]
fn child_storage_key_or_panic(storage_key: &[u8]) -> ChildStorageKey {
match ChildStorageKey::from_slice(storage_key) {
Some(storage_key) => storage_key,
None => panic!("child storage key is invalid"),
}
}
/// Interface for accessing the storage from within the runtime.
#[runtime_interface]
pub trait Storage {
/// Returns the data for `key` in the storage or `None` if the key can not be found.
fn get(&self, key: &[u8]) -> Option> {
self.storage(key).map(|s| s.to_vec())
}
/// Returns the data for `key` in the child storage or `None` if the key can not be found.
fn child_get(&self, child_storage_key: &[u8], key: &[u8]) -> Option> {
let storage_key = child_storage_key_or_panic(child_storage_key);
self.child_storage(storage_key, key).map(|s| s.to_vec())
}
/// Get `key` from storage, placing the value into `value_out` and return the number of
/// bytes that the entry in storage has beyond the offset or `None` if the storage entry
/// doesn't exist at all.
/// If `value_out` length is smaller than the returned length, only `value_out` length bytes
/// are copied into `value_out`.
fn read(&self, key: &[u8], value_out: &mut [u8], value_offset: u32) -> Option {
self.storage(key).map(|value| {
let value_offset = value_offset as usize;
let data = &value[value_offset.min(value.len())..];
let written = std::cmp::min(data.len(), value_out.len());
value_out[..written].copy_from_slice(&data[..written]);
value.len() as u32
})
}
/// Get `key` from child storage, placing the value into `value_out` and return the number
/// of bytes that the entry in storage has beyond the offset or `None` if the storage entry
/// doesn't exist at all.
/// If `value_out` length is smaller than the returned length, only `value_out` length bytes
/// are copied into `value_out`.
fn child_read(
&self,
child_storage_key: &[u8],
key: &[u8],
value_out: &mut [u8],
value_offset: u32,
) -> Option {
let storage_key = child_storage_key_or_panic(child_storage_key);
self.child_storage(storage_key, key)
.map(|value| {
let value_offset = value_offset as usize;
let data = &value[value_offset.min(value.len())..];
let written = std::cmp::min(data.len(), value_out.len());
value_out[..written].copy_from_slice(&data[..written]);
value.len() as u32
})
}
/// Set `key` to `value` in the storage.
fn set(&mut self, key: &[u8], value: &[u8]) {
self.set_storage(key.to_vec(), value.to_vec());
}
/// Set `key` to `value` in the child storage denoted by `child_storage_key`.
fn child_set(&mut self, child_storage_key: &[u8], key: &[u8], value: &[u8]) {
let storage_key = child_storage_key_or_panic(child_storage_key);
self.set_child_storage(storage_key, key.to_vec(), value.to_vec());
}
/// Clear the storage of the given `key` and its value.
fn clear(&mut self, key: &[u8]) {
self.clear_storage(key)
}
/// Clear the given child storage of the given `key` and its value.
fn child_clear(&mut self, child_storage_key: &[u8], key: &[u8]) {
let storage_key = child_storage_key_or_panic(child_storage_key);
self.clear_child_storage(storage_key, key);
}
/// Clear an entire child storage.
fn child_storage_kill(&mut self, child_storage_key: &[u8]) {
let storage_key = child_storage_key_or_panic(child_storage_key);
self.kill_child_storage(storage_key);
}
/// Check whether the given `key` exists in storage.
fn exists(&self, key: &[u8]) -> bool {
self.exists_storage(key)
}
/// Check whether the given `key` exists in storage.
fn child_exists(&self, child_storage_key: &[u8], key: &[u8]) -> bool {
let storage_key = child_storage_key_or_panic(child_storage_key);
self.exists_child_storage(storage_key, key)
}
/// Clear the storage of each key-value pair where the key starts with the given `prefix`.
fn clear_prefix(&mut self, prefix: &[u8]) {
Externalities::clear_prefix(*self, prefix)
}
/// Clear the child storage of each key-value pair where the key starts with the given `prefix`.
fn child_clear_prefix(&mut self, child_storage_key: &[u8], prefix: &[u8]) {
let storage_key = child_storage_key_or_panic(child_storage_key);
self.clear_child_prefix(storage_key, prefix);
}
/// "Commit" all existing operations and compute the resulting storage root.
fn root(&mut self) -> H256 {
self.storage_root()
}
/// "Commit" all existing operations and compute the resulting child storage root.
fn child_root(&mut self, child_storage_key: &[u8]) -> Vec {
let storage_key = child_storage_key_or_panic(child_storage_key);
self.child_storage_root(storage_key)
}
/// "Commit" all existing operations and get the resulting storage change root.
fn changes_root(&mut self, parent_hash: [u8; 32]) -> Option {
self.storage_changes_root(parent_hash.into()).ok().and_then(|h| h)
}
/// A trie root formed from the iterated items.
fn blake2_256_trie_root(input: Vec<(Vec, Vec)>) -> H256 {
Layout::::trie_root(input)
}
/// A trie root formed from the enumerated items.
fn blake2_256_ordered_trie_root(input: Vec>) -> H256 {
Layout::::ordered_trie_root(input)
}
}
/// Interface that provides miscellaneous functions for communicating between the runtime and the node.
#[runtime_interface]
pub trait Misc {
/// The current relay chain identifier.
fn chain_id(&self) -> u64 {
externalities::Externalities::chain_id(*self)
}
/// Print a number.
fn print_num(val: u64) {
log::debug!(target: "runtime", "{}", val);
}
/// Print any valid `utf8` buffer.
fn print_utf8(utf8: &[u8]) {
if let Ok(data) = std::str::from_utf8(utf8) {
log::debug!(target: "runtime", "{}", data)
}
}
/// Print any `u8` slice as hex.
fn print_hex(data: &[u8]) {
log::debug!(target: "runtime", "{}", HexDisplay::from(&data));
}
}
/// Interfaces for working with crypto related types from within the runtime.
#[runtime_interface]
pub trait Crypto {
/// Returns all `ed25519` public keys for the given key id from the keystore.
fn ed25519_public_keys(&mut self, id: KeyTypeId) -> Vec {
self.extension::()
.expect("No `keystore` associated for the current context!")
.read()
.ed25519_public_keys(id)
}
/// Generate an `ed22519` key for the given key type using an optional `seed` and
/// store it in the keystore.
///
/// The `seed` needs to be a valid utf8.
///
/// Returns the public key.
fn ed25519_generate(&mut self, id: KeyTypeId, seed: Option>) -> ed25519::Public {
let seed = seed.as_ref().map(|s| std::str::from_utf8(&s).expect("Seed is valid utf8!"));
self.extension::()
.expect("No `keystore` associated for the current context!")
.write()
.ed25519_generate_new(id, seed)
.expect("`ed25519_generate` failed")
}
/// Sign the given `msg` with the `ed25519` key that corresponds to the given public key and
/// key type in the keystore.
///
/// Returns the signature.
fn ed25519_sign(
&mut self,
id: KeyTypeId,
pub_key: &ed25519::Public,
msg: &[u8],
) -> Option {
self.extension::()
.expect("No `keystore` associated for the current context!")
.read()
.ed25519_key_pair(id, &pub_key)
.map(|k| k.sign(msg))
}
/// Verify an `ed25519` signature.
///
/// Returns `true` when the verification in successful.
fn ed25519_verify(
&self,
sig: &ed25519::Signature,
msg: &[u8],
pub_key: &ed25519::Public,
) -> bool {
ed25519::Pair::verify(sig, msg, pub_key)
}
/// Returns all `sr25519` public keys for the given key id from the keystore.
fn sr25519_public_keys(&mut self, id: KeyTypeId) -> Vec {
self.extension::()
.expect("No `keystore` associated for the current context!")
.read()
.sr25519_public_keys(id)
}
/// Generate an `sr22519` key for the given key type using an optional seed and
/// store it in the keystore.
///
/// The `seed` needs to be a valid utf8.
///
/// Returns the public key.
fn sr25519_generate(&mut self, id: KeyTypeId, seed: Option>) -> sr25519::Public {
let seed = seed.as_ref().map(|s| std::str::from_utf8(&s).expect("Seed is valid utf8!"));
self.extension::()
.expect("No `keystore` associated for the current context!")
.write()
.sr25519_generate_new(id, seed)
.expect("`sr25519_generate` failed")
}
/// Sign the given `msg` with the `sr25519` key that corresponds to the given public key and
/// key type in the keystore.
///
/// Returns the signature.
fn sr25519_sign(
&mut self,
id: KeyTypeId,
pub_key: &sr25519::Public,
msg: &[u8],
) -> Option {
self.extension::()
.expect("No `keystore` associated for the current context!")
.read()
.sr25519_key_pair(id, &pub_key)
.map(|k| k.sign(msg))
}
/// Verify an `sr25519` signature.
///
/// Returns `true` when the verification in successful.
fn sr25519_verify(sig: &sr25519::Signature, msg: &[u8], pubkey: &sr25519::Public) -> bool {
sr25519::Pair::verify(sig, msg, pubkey)
}
/// Verify and recover a SECP256k1 ECDSA signature.
/// - `sig` is passed in RSV format. V should be either 0/1 or 27/28.
/// Returns `Err` if the signature is bad, otherwise the 64-byte pubkey
/// (doesn't include the 0x04 prefix).
fn secp256k1_ecdsa_recover(
sig: &[u8; 65],
msg: &[u8; 32],
) -> Result<[u8; 64], EcdsaVerifyError> {
let rs = secp256k1::Signature::parse_slice(&sig[0..64])
.map_err(|_| EcdsaVerifyError::BadRS)?;
let v = secp256k1::RecoveryId::parse(if sig[64] > 26 { sig[64] - 27 } else { sig[64] } as u8)
.map_err(|_| EcdsaVerifyError::BadV)?;
let pubkey = secp256k1::recover(&secp256k1::Message::parse(msg), &rs, &v)
.map_err(|_| EcdsaVerifyError::BadSignature)?;
let mut res = [0u8; 64];
res.copy_from_slice(&pubkey.serialize()[1..65]);
Ok(res)
}
/// Verify and recover a SECP256k1 ECDSA signature.
/// - `sig` is passed in RSV format. V should be either 0/1 or 27/28.
/// - returns `Err` if the signature is bad, otherwise the 33-byte compressed pubkey.
fn secp256k1_ecdsa_recover_compressed(
sig: &[u8; 65],
msg: &[u8; 32],
) -> Result<[u8; 33], EcdsaVerifyError> {
let rs = secp256k1::Signature::parse_slice(&sig[0..64])
.map_err(|_| EcdsaVerifyError::BadRS)?;
let v = secp256k1::RecoveryId::parse(if sig[64] > 26 { sig[64] - 27 } else { sig[64] } as u8)
.map_err(|_| EcdsaVerifyError::BadV)?;
let pubkey = secp256k1::recover(&secp256k1::Message::parse(msg), &rs, &v)
.map_err(|_| EcdsaVerifyError::BadSignature)?;
Ok(pubkey.serialize_compressed())
}
}
/// Interface that provides functions for hashing with different algorithms.
#[runtime_interface]
pub trait Hashing {
/// Conduct a 256-bit Keccak hash.
fn keccak_256(data: &[u8]) -> [u8; 32] {
primitives::hashing::keccak_256(data)
}
/// Conduct a 128-bit Blake2 hash.
fn blake2_128(data: &[u8]) -> [u8; 16] {
primitives::hashing::blake2_128(data)
}
/// Conduct a 256-bit Blake2 hash.
fn blake2_256(data: &[u8]) -> [u8; 32] {
primitives::hashing::blake2_256(data)
}
/// Conduct four XX hashes to give a 256-bit result.
fn twox_256(data: &[u8]) -> [u8; 32] {
primitives::hashing::twox_256(data)
}
/// Conduct two XX hashes to give a 128-bit result.
fn twox_128(data: &[u8]) -> [u8; 16] {
primitives::hashing::twox_128(data)
}
/// Conduct two XX hashes to give a 64-bit result.
fn twox_64(data: &[u8]) -> [u8; 8] {
primitives::hashing::twox_64(data)
}
}
/// Interface that provides functions to access the offchain functionality.
#[runtime_interface]
pub trait Offchain {
/// Returns if the local node is a potential validator.
///
/// Even if this function returns `true`, it does not mean that any keys are configured
/// and that the validator is registered in the chain.
fn is_validator(&mut self) -> bool {
self.extension::()
.expect("is_validator can be called only in the offchain worker context")
.is_validator()
}
/// Submit an encoded transaction to the pool.
///
/// The transaction will end up in the pool.
fn submit_transaction(&mut self, data: Vec) -> Result<(), ()> {
self.extension::()
.expect("submit_transaction can be called only in the offchain worker context")
.submit_transaction(data)
}
/// Returns information about the local node's network state.
fn network_state(&mut self) -> Result {
self.extension::()
.expect("network_state can be called only in the offchain worker context")
.network_state()
}
/// Returns current UNIX timestamp (in millis)
fn timestamp(&mut self) -> Timestamp {
self.extension::()
.expect("timestamp can be called only in the offchain worker context")
.timestamp()
}
/// Pause the execution until `deadline` is reached.
fn sleep_until(&mut self, deadline: Timestamp) {
self.extension::()
.expect("sleep_until can be called only in the offchain worker context")
.sleep_until(deadline)
}
/// Returns a random seed.
///
/// This is a trully random non deterministic seed generated by host environment.
/// Obviously fine in the off-chain worker context.
fn random_seed(&mut self) -> [u8; 32] {
self.extension::()
.expect("random_seed can be called only in the offchain worker context")
.random_seed()
}
/// Sets a value in the local storage.
///
/// Note this storage is not part of the consensus, it's only accessible by
/// offchain worker tasks running on the same machine. It IS persisted between runs.
fn local_storage_set(&mut self, kind: StorageKind, key: &[u8], value: &[u8]) {
self.extension::()
.expect("random_seed can be called only in the offchain worker context")
.local_storage_set(kind, key, value)
}
/// Sets a value in the local storage if it matches current value.
///
/// Since multiple offchain workers may be running concurrently, to prevent
/// data races use CAS to coordinate between them.
///
/// Returns `true` if the value has been set, `false` otherwise.
///
/// Note this storage is not part of the consensus, it's only accessible by
/// offchain worker tasks running on the same machine. It IS persisted between runs.
fn local_storage_compare_and_set(
&mut self,
kind: StorageKind,
key: &[u8],
old_value: Option>,
new_value: &[u8],
) -> bool {
self.extension::()
.expect("random_seed can be called only in the offchain worker context")
.local_storage_compare_and_set(kind, key, old_value.as_ref().map(|v| v.deref()), new_value)
}
/// Gets a value from the local storage.
///
/// If the value does not exist in the storage `None` will be returned.
/// Note this storage is not part of the consensus, it's only accessible by
/// offchain worker tasks running on the same machine. It IS persisted between runs.
fn local_storage_get(&mut self, kind: StorageKind, key: &[u8]) -> Option> {
self.extension::()
.expect("random_seed can be called only in the offchain worker context")
.local_storage_get(kind, key)
}
/// Initiates a http request given HTTP verb and the URL.
///
/// Meta is a future-reserved field containing additional, parity-scale-codec encoded parameters.
/// Returns the id of newly started request.
fn http_request_start(
&mut self,
method: &str,
uri: &str,
meta: &[u8],
) -> Result {
self.extension::()
.expect("random_seed can be called only in the offchain worker context")
.http_request_start(method, uri, meta)
}
/// Append header to the request.
fn http_request_add_header(
&mut self,
request_id: HttpRequestId,
name: &str,
value: &str,
) -> Result<(), ()> {
self.extension::()
.expect("random_seed can be called only in the offchain worker context")
.http_request_add_header(request_id, name, value)
}
/// Write a chunk of request body.
///
/// Writing an empty chunks finalizes the request.
/// Passing `None` as deadline blocks forever.
///
/// Returns an error in case deadline is reached or the chunk couldn't be written.
fn http_request_write_body(
&mut self,
request_id: HttpRequestId,
chunk: &[u8],
deadline: Option,
) -> Result<(), HttpError> {
self.extension::()
.expect("random_seed can be called only in the offchain worker context")
.http_request_write_body(request_id, chunk, deadline)
}
/// Block and wait for the responses for given requests.
///
/// Returns a vector of request statuses (the len is the same as ids).
/// Note that if deadline is not provided the method will block indefinitely,
/// otherwise unready responses will produce `DeadlineReached` status.
///
/// Passing `None` as deadline blocks forever.
fn http_response_wait(
&mut self,
ids: &[HttpRequestId],
deadline: Option,
) -> Vec {
self.extension::()
.expect("random_seed can be called only in the offchain worker context")
.http_response_wait(ids, deadline)
}
/// Read all response headers.
///
/// Returns a vector of pairs `(HeaderKey, HeaderValue)`.
/// NOTE response headers have to be read before response body.
fn http_response_headers(&mut self, request_id: HttpRequestId) -> Vec<(Vec, Vec)> {
self.extension::()
.expect("random_seed can be called only in the offchain worker context")
.http_response_headers(request_id)
}
/// Read a chunk of body response to given buffer.
///
/// Returns the number of bytes written or an error in case a deadline
/// is reached or server closed the connection.
/// If `0` is returned it means that the response has been fully consumed
/// and the `request_id` is now invalid.
/// NOTE this implies that response headers must be read before draining the body.
/// Passing `None` as a deadline blocks forever.
fn http_response_read_body(
&mut self,
request_id: HttpRequestId,
buffer: &mut [u8],
deadline: Option,
) -> Result {
self.extension::()
.expect("random_seed can be called only in the offchain worker context")
.http_response_read_body(request_id, buffer, deadline)
.map(|r| r as u32)
}
}
/// Wasm only interface that provides functions for calling into the allocator.
#[runtime_interface(wasm_only)]
trait Allocator {
/// Malloc the given number of bytes and return the pointer to the allocated memory location.
fn malloc(&mut self, size: u32) -> Pointer {
self.allocate_memory(size).expect("Failed to allocate memory")
}
/// Free the given pointer.
fn free(&mut self, ptr: Pointer) {
self.deallocate_memory(ptr).expect("Failed to deallocate memory")
}
}
/// Interface that provides functions for logging from within the runtime.
#[runtime_interface]
pub trait Logging {
/// Request to print a log message on the host.
///
/// Note that this will be only displayed if the host is enabled to display log messages with
/// given level and target.
///
/// Instead of using directly, prefer setting up `RuntimeLogger` and using `log` macros.
fn log(level: LogLevel, target: &str, message: &[u8]) {
if let Ok(message) = std::str::from_utf8(message) {
log::log!(
target: target,
log::Level::from(level),
"{}",
message,
)
}
}
}
/// Wasm-only interface that provides functions for interacting with the sandbox.
#[runtime_interface(wasm_only)]
pub trait Sandbox {
/// Instantiate a new sandbox instance with the given `wasm_code`.
fn instantiate(
&mut self,
dispatch_thunk: u32,
wasm_code: &[u8],
env_def: &[u8],
state_ptr: Pointer,
) -> u32 {
self.sandbox()
.instance_new(dispatch_thunk, wasm_code, env_def, state_ptr.into())
.expect("Failed to instantiate a new sandbox")
}
/// Invoke `function` in the sandbox with `sandbox_idx`.
fn invoke(
&mut self,
instance_idx: u32,
function: &str,
args: &[u8],
return_val_ptr: Pointer,
return_val_len: u32,
state_ptr: Pointer,
) -> u32 {
self.sandbox().invoke(
instance_idx,
&function,
&args,
return_val_ptr,
return_val_len,
state_ptr.into(),
).expect("Failed to invoke function with sandbox")
}
/// Create a new memory instance with the given `initial` and `maximum` size.
fn memory_new(&mut self, initial: u32, maximum: u32) -> u32 {
self.sandbox()
.memory_new(initial, maximum)
.expect("Failed to create new memory with sandbox")
}
/// Get the memory starting at `offset` from the instance with `memory_idx` into the buffer.
fn memory_get(
&mut self,
memory_idx: u32,
offset: u32,
buf_ptr: Pointer,
buf_len: u32,
) -> u32 {
self.sandbox()
.memory_get(memory_idx, offset, buf_ptr, buf_len)
.expect("Failed to get memory with sandbox")
}
/// Set the memory in the given `memory_idx` to the given value at `offset`.
fn memory_set(
&mut self,
memory_idx: u32,
offset: u32,
val_ptr: Pointer,
val_len: u32,
) -> u32 {
self.sandbox()
.memory_set(memory_idx, offset, val_ptr, val_len)
.expect("Failed to set memory with sandbox")
}
/// Teardown the memory instance with the given `memory_idx`.
fn memory_teardown(&mut self, memory_idx: u32) {
self.sandbox().memory_teardown(memory_idx).expect("Failed to teardown memory with sandbox")
}
/// Teardown the sandbox instance with the given `instance_idx`.
fn instance_teardown(&mut self, instance_idx: u32) {
self.sandbox().instance_teardown(instance_idx).expect("Failed to teardown sandbox instance")
}
}
/// Allocator used by Substrate when executing the Wasm runtime.
#[cfg(not(feature = "std"))]
struct WasmAllocator;
#[cfg(all(not(feature = "disable_global_allocator"), not(feature = "std")))]
#[global_allocator]
static ALLOCATOR: WasmAllocator = WasmAllocator;
#[cfg(not(feature = "std"))]
mod allocator_impl {
use super::*;
use core::alloc::{GlobalAlloc, Layout};
unsafe impl GlobalAlloc for WasmAllocator {
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
allocator::malloc(layout.size() as u32)
}
unsafe fn dealloc(&self, ptr: *mut u8, _: Layout) {
allocator::free(ptr)
}
}
}
#[cfg(all(not(feature = "disable_panic_handler"), not(feature = "std")))]
#[panic_handler]
#[no_mangle]
pub fn panic(info: &core::panic::PanicInfo) -> ! {
unsafe {
let message = rstd::alloc::format!("{}", info);
misc::print_utf8(message.as_bytes());
core::intrinsics::abort()
}
}
#[cfg(all(not(feature = "disable_oom"), not(feature = "std")))]
#[alloc_error_handler]
pub extern fn oom(_: core::alloc::Layout) -> ! {
static OOM_MSG: &str = "Runtime memory exhausted. Aborting";
unsafe {
misc::print_utf8(OOM_MSG.as_bytes());
core::intrinsics::abort();
}
}
/// Type alias for Externalities implementation used in tests.
#[cfg(feature = "std")]
pub type TestExternalities = substrate_state_machine::TestExternalities;
/// The host functions Substrate provides for the Wasm runtime environment.
///
/// All these host functions will be callable from inside the Wasm environment.
#[cfg(feature = "std")]
pub type SubstrateHostFunctions = (
storage::HostFunctions,
misc::HostFunctions,
offchain::HostFunctions,
crypto::HostFunctions,
hashing::HostFunctions,
allocator::HostFunctions,
logging::HostFunctions,
sandbox::HostFunctions,
);
#[cfg(test)]
mod tests {
use super::*;
use primitives::map;
use substrate_state_machine::BasicExternalities;
#[test]
fn storage_works() {
let mut t = BasicExternalities::default();
t.execute_with(|| {
assert_eq!(storage::get(b"hello"), None);
storage::set(b"hello", b"world");
assert_eq!(storage::get(b"hello"), Some(b"world".to_vec()));
assert_eq!(storage::get(b"foo"), None);
storage::set(b"foo", &[1, 2, 3][..]);
});
t = BasicExternalities::new(map![b"foo".to_vec() => b"bar".to_vec()], map![]);
t.execute_with(|| {
assert_eq!(storage::get(b"hello"), None);
assert_eq!(storage::get(b"foo"), Some(b"bar".to_vec()));
});
}
#[test]
fn read_storage_works() {
let mut t = BasicExternalities::new(
map![b":test".to_vec() => b"\x0b\0\0\0Hello world".to_vec()],
map![],
);
t.execute_with(|| {
let mut v = [0u8; 4];
assert!(storage::read(b":test", &mut v[..], 0).unwrap() >= 4);
assert_eq!(v, [11u8, 0, 0, 0]);
let mut w = [0u8; 11];
assert!(storage::read(b":test", &mut w[..], 4).unwrap() >= 11);
assert_eq!(&w, b"Hello world");
});
}
#[test]
fn clear_prefix_works() {
let mut t = BasicExternalities::new(
map![
b":a".to_vec() => b"\x0b\0\0\0Hello world".to_vec(),
b":abcd".to_vec() => b"\x0b\0\0\0Hello world".to_vec(),
b":abc".to_vec() => b"\x0b\0\0\0Hello world".to_vec(),
b":abdd".to_vec() => b"\x0b\0\0\0Hello world".to_vec()
],
map![],
);
t.execute_with(|| {
storage::clear_prefix(b":abc");
assert!(storage::get(b":a").is_some());
assert!(storage::get(b":abdd").is_some());
assert!(storage::get(b":abcd").is_none());
assert!(storage::get(b":abc").is_none());
});
}
}