Newer
Older
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
use super::*;
use crate::{new_executor, XcmCallOf};
use codec::Encode;
use frame_benchmarking::{benchmarks, BenchmarkError};
use frame_support::dispatch::GetDispatchInfo;
use sp_std::vec;
latest::{prelude::*, MaxDispatchErrorLen, MaybeErrorCode, Weight},
DoubleEncoded,
};
use xcm_executor::{ExecutorError, FeesMode};
let mut executor = new_executor::<T>(Default::default());
let instruction = Instruction::<XcmCallOf<T>>::ReportHolding {
response_info: QueryResponseInfo {
destination: T::valid_destination()?,
query_id: Default::default(),
max_weight: Weight::MAX,
},
// Worst case is looking through all holdings for every asset explicitly.
assets: Definite(holding),
};
let xcm = Xcm(vec![instruction]);
} : {
} verify {
// The completion of execution above is enough to validate this is completed.
}
// This benchmark does not use any additional orders or instructions. This should be managed
// by the `deep` and `shallow` implementation.
buy_execution {
let mut executor = new_executor::<T>(Default::default());
let fee_asset = Concrete(Here.into());
let instruction = Instruction::<XcmCallOf<T>>::BuyExecution {
fees: (fee_asset, 100_000_000u128).into(), // should be something inside of holding
weight_limit: WeightLimit::Unlimited,
};
let xcm = Xcm(vec![instruction]);
} : {
} verify {
}
query_response {
let mut executor = new_executor::<T>(Default::default());
let (query_id, response) = T::worst_case_response();
let max_weight = Weight::MAX;
let querier: Option<MultiLocation> = Some(Here.into());
let instruction = Instruction::QueryResponse { query_id, response, max_weight, querier };
let xcm = Xcm(vec![instruction]);
}: {
} verify {
// The assert above is enough to show this XCM succeeded
}
// We don't care about the call itself, since that is accounted for in the weight parameter
// and included in the final weight calculation. So this is just the overhead of submitting
// a noop call.
transact {
let (origin, noop_call) = T::transact_origin_and_runtime_call()?;
let mut executor = new_executor::<T>(origin);
let double_encoded_noop_call: DoubleEncoded<_> = noop_call.encode().into();
let instruction = Instruction::Transact {
origin_kind: OriginKind::SovereignAccount,
require_weight_at_most: noop_call.get_dispatch_info().weight,
call: double_encoded_noop_call,
};
let xcm = Xcm(vec![instruction]);
}: {
}
refund_surplus {
let mut executor = new_executor::<T>(Default::default());
executor.set_holding(holding);
executor.set_total_surplus(Weight::from_parts(1337, 1337));
executor.set_total_refunded(Weight::zero());
let instruction = Instruction::<XcmCallOf<T>>::RefundSurplus;
let xcm = Xcm(vec![instruction]);
} : {
assert_eq!(executor.total_surplus(), &Weight::from_parts(1337, 1337));
assert_eq!(executor.total_refunded(), &Weight::from_parts(1337, 1337));
}
set_error_handler {
let mut executor = new_executor::<T>(Default::default());
let instruction = Instruction::<XcmCallOf<T>>::SetErrorHandler(Xcm(vec![]));
let xcm = Xcm(vec![instruction]);
} : {
}
set_appendix {
let mut executor = new_executor::<T>(Default::default());
let appendix = Xcm(vec![]);
let instruction = Instruction::<XcmCallOf<T>>::SetAppendix(appendix);
let xcm = Xcm(vec![instruction]);
} : {
}
clear_error {
let mut executor = new_executor::<T>(Default::default());
let instruction = Instruction::<XcmCallOf<T>>::ClearError;
let xcm = Xcm(vec![instruction]);
} : {
}
descend_origin {
let mut executor = new_executor::<T>(Default::default());
let who = X2(OnlyChild, OnlyChild);
let instruction = Instruction::DescendOrigin(who.clone());
let xcm = Xcm(vec![instruction]);
} : {
} verify {
assert_eq!(
parents: 0,
interior: who,
}),
);
}
clear_origin {
let mut executor = new_executor::<T>(Default::default());
let instruction = Instruction::ClearOrigin;
let xcm = Xcm(vec![instruction]);
} : {
}
report_error {
let mut executor = new_executor::<T>(Default::default());
let query_id = Default::default();
let destination = T::valid_destination().map_err(|_| BenchmarkError::Skip)?;
let max_weight = Default::default();
let instruction = Instruction::ReportError(QueryResponseInfo {
query_id, destination, max_weight
});
let xcm = Xcm(vec![instruction]);
}: {
} verify {
// the execution succeeding is all we need to verify this xcm was successful
}
claim_asset {
use xcm_executor::traits::DropAssets;
let (origin, ticket, assets) = T::claimable_asset()?;
// We place some items into the asset trap to claim.
<T::XcmConfig as xcm_executor::Config>::AssetTrap::drop_assets(
&origin,
assets.clone().into(),
);
// Assets should be in the trap now.
let mut executor = new_executor::<T>(origin);
let instruction = Instruction::ClaimAsset { assets: assets.clone(), ticket };
let xcm = Xcm(vec![instruction]);
} :{
assert!(executor.holding().ensure_contains(&assets).is_ok());
}
trap {
let mut executor = new_executor::<T>(Default::default());
let instruction = Instruction::Trap(10);
let xcm = Xcm(vec![instruction]);
// In order to access result in the verification below, it needs to be defined here.
let mut _result = Ok(());
} : {
assert!(matches!(_result, Err(ExecutorError {
xcm_error: XcmError::Trap(10),
..
})));
}
subscribe_version {
use xcm_executor::traits::VersionChangeNotifier;
let origin = T::subscribe_origin()?;
let query_id = Default::default();
let max_response_weight = Default::default();
let mut executor = new_executor::<T>(origin.clone());
let instruction = Instruction::SubscribeVersion { query_id, max_response_weight };
let xcm = Xcm(vec![instruction]);
} : {
} verify {
assert!(<T::XcmConfig as xcm_executor::Config>::SubscriptionService::is_subscribed(&origin));
}
unsubscribe_version {
use xcm_executor::traits::VersionChangeNotifier;
// First we need to subscribe to notifications.
let query_id = Default::default();
let max_response_weight = Default::default();
<T::XcmConfig as xcm_executor::Config>::SubscriptionService::start(
&origin,
query_id,
max_response_weight,
&XcmContext {
origin: Some(origin.clone()),
).map_err(|_| "Could not start subscription")?;
assert!(<T::XcmConfig as xcm_executor::Config>::SubscriptionService::is_subscribed(&origin));
let mut executor = new_executor::<T>(origin.clone());
let instruction = Instruction::UnsubscribeVersion;
let xcm = Xcm(vec![instruction]);
} : {
} verify {
assert!(!<T::XcmConfig as xcm_executor::Config>::SubscriptionService::is_subscribed(&origin));
}
initiate_reserve_withdraw {
let assets_filter = MultiAssetFilter::Definite(holding.clone());
let reserve = T::valid_destination().map_err(|_| BenchmarkError::Skip)?;
let mut executor = new_executor::<T>(Default::default());
let instruction = Instruction::InitiateReserveWithdraw { assets: assets_filter, reserve, xcm: Xcm(vec![]) };
let xcm = Xcm(vec![instruction]);
} verify {
// The execute completing successfully is as good as we can check.
// TODO: Potentially add new trait to XcmSender to detect a queued outgoing message. #4426
}
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
burn_asset {
let holding = T::worst_case_holding(0);
let assets = holding.clone();
let mut executor = new_executor::<T>(Default::default());
executor.set_holding(holding.into());
let instruction = Instruction::BurnAsset(assets.into());
let xcm = Xcm(vec![instruction]);
}: {
executor.bench_process(xcm)?;
} verify {
assert!(executor.holding().is_empty());
}
expect_asset {
let holding = T::worst_case_holding(0);
let assets = holding.clone();
let mut executor = new_executor::<T>(Default::default());
executor.set_holding(holding.into());
let instruction = Instruction::ExpectAsset(assets.into());
let xcm = Xcm(vec![instruction]);
}: {
executor.bench_process(xcm)?;
} verify {
// `execute` completing successfully is as good as we can check.
}
expect_origin {
let expected_origin = Parent.into();
let mut executor = new_executor::<T>(Default::default());
let instruction = Instruction::ExpectOrigin(Some(expected_origin));
let xcm = Xcm(vec![instruction]);
let mut _result = Ok(());
}: {
_result = executor.bench_process(xcm);
} verify {
assert!(matches!(_result, Err(ExecutorError {
xcm_error: XcmError::ExpectationFalse,
..
})));
}
expect_error {
let mut executor = new_executor::<T>(Default::default());
executor.set_error(Some((3u32, XcmError::Overflow)));
let instruction = Instruction::ExpectError(None);
let xcm = Xcm(vec![instruction]);
let mut _result = Ok(());
}: {
_result = executor.bench_process(xcm);
} verify {
assert!(matches!(_result, Err(ExecutorError {
xcm_error: XcmError::ExpectationFalse,
..
})));
}
expect_transact_status {
let mut executor = new_executor::<T>(Default::default());
let worst_error = || -> MaybeErrorCode {
vec![0; MaxDispatchErrorLen::get() as usize].into()
};
executor.set_transact_status(worst_error());
let instruction = Instruction::ExpectTransactStatus(worst_error());
let xcm = Xcm(vec![instruction]);
let mut _result = Ok(());
}: {
_result = executor.bench_process(xcm);
} verify {
assert!(matches!(_result, Ok(..)));
}
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
query_pallet {
let query_id = Default::default();
let destination = T::valid_destination().map_err(|_| BenchmarkError::Skip)?;
let max_weight = Default::default();
let mut executor = new_executor::<T>(Default::default());
let instruction = Instruction::QueryPallet {
module_name: b"frame_system".to_vec(),
response_info: QueryResponseInfo { destination, query_id, max_weight },
};
let xcm = Xcm(vec![instruction]);
}: {
executor.bench_process(xcm)?;
} verify {
// TODO: Potentially add new trait to XcmSender to detect a queued outgoing message. #4426
}
expect_pallet {
let mut executor = new_executor::<T>(Default::default());
let instruction = Instruction::ExpectPallet {
index: 0,
name: b"System".to_vec(),
module_name: b"frame_system".to_vec(),
crate_major: 4,
min_crate_minor: 0,
};
let xcm = Xcm(vec![instruction]);
}: {
executor.bench_process(xcm)?;
} verify {
// the execution succeeding is all we need to verify this xcm was successful
}
report_transact_status {
let query_id = Default::default();
let destination = T::valid_destination().map_err(|_| BenchmarkError::Skip)?;
let max_weight = Default::default();
let mut executor = new_executor::<T>(Default::default());
executor.set_transact_status(b"MyError".to_vec().into());
let instruction = Instruction::ReportTransactStatus(QueryResponseInfo {
query_id,
destination,
max_weight,
});
let xcm = Xcm(vec![instruction]);
}: {
executor.bench_process(xcm)?;
} verify {
// TODO: Potentially add new trait to XcmSender to detect a queued outgoing message. #4426
}
clear_transact_status {
let mut executor = new_executor::<T>(Default::default());
executor.set_transact_status(b"MyError".to_vec().into());
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
let instruction = Instruction::ClearTransactStatus;
let xcm = Xcm(vec![instruction]);
}: {
executor.bench_process(xcm)?;
} verify {
assert_eq!(executor.transact_status(), &MaybeErrorCode::Success);
}
set_topic {
let mut executor = new_executor::<T>(Default::default());
let instruction = Instruction::SetTopic([1; 32]);
let xcm = Xcm(vec![instruction]);
}: {
executor.bench_process(xcm)?;
} verify {
assert_eq!(executor.topic(), &Some([1; 32]));
}
clear_topic {
let mut executor = new_executor::<T>(Default::default());
executor.set_topic(Some([2; 32]));
let instruction = Instruction::ClearTopic;
let xcm = Xcm(vec![instruction]);
}: {
executor.bench_process(xcm)?;
} verify {
assert_eq!(executor.topic(), &None);
}
exchange_asset {
let (give, want) = T::worst_case_asset_exchange().map_err(|_| BenchmarkError::Skip)?;
let assets = give.clone();
let mut executor = new_executor::<T>(Default::default());
executor.set_holding(give.into());
let instruction = Instruction::ExchangeAsset {
give: assets.into(),
want: want.clone(),
maximal: true,
};
let xcm = Xcm(vec![instruction]);
}: {
executor.bench_process(xcm)?;
} verify {
assert_eq!(executor.holding(), &want.into());
}
universal_origin {
let (origin, alias) = T::universal_alias().map_err(|_| BenchmarkError::Skip)?;
let mut executor = new_executor::<T>(origin);
let instruction = Instruction::UniversalOrigin(alias.clone());
let xcm = Xcm(vec![instruction]);
}: {
executor.bench_process(xcm)?;
} verify {
use frame_support::traits::Get;
let universal_location = <T::XcmConfig as xcm_executor::Config>::UniversalLocation::get();
assert_eq!(executor.origin(), &Some(X1(alias).relative_to(&universal_location)));
}
export_message {
let x in 1 .. 1000;
// The `inner_xcm` influences `ExportMessage` total weight based on
// `inner_xcm.encoded_size()`, so for this benchmark use smallest encoded instruction
// to approximate weight per "unit" of encoded size; then actual weight can be estimated
// to be `inner_xcm.encoded_size() * benchmarked_unit`.
// Use `ClearOrigin` as the small encoded instruction.
let inner_xcm = Xcm(vec![ClearOrigin; x as usize]);
// Get `origin`, `network` and `destination` from configured runtime.
let (origin, network, destination) = T::export_message_origin_and_destination()?;
let mut executor = new_executor::<T>(origin);
let xcm = Xcm(vec![ExportMessage {
network, destination, xcm: inner_xcm,
}]);
}: {
executor.bench_process(xcm)?;
} verify {
// The execute completing successfully is as good as we can check.
// TODO: Potentially add new trait to XcmSender to detect a queued outgoing message. #4426
}
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
set_fees_mode {
let mut executor = new_executor::<T>(Default::default());
executor.set_fees_mode(FeesMode { jit_withdraw: false });
let instruction = Instruction::SetFeesMode { jit_withdraw: true };
let xcm = Xcm(vec![instruction]);
}: {
executor.bench_process(xcm)?;
} verify {
assert_eq!(executor.fees_mode(), &FeesMode { jit_withdraw: true });
}
lock_asset {
let (unlocker, owner, asset) = T::unlockable_asset()?;
let mut executor = new_executor::<T>(owner);
executor.set_holding(asset.clone().into());
let instruction = Instruction::LockAsset { asset, unlocker };
let xcm = Xcm(vec![instruction]);
}: {
executor.bench_process(xcm)?;
} verify {
// TODO: Potentially add new trait to XcmSender to detect a queued outgoing message. #4426
}
unlock_asset {
use xcm_executor::traits::{AssetLock, Enact};
let (unlocker, owner, asset) = T::unlockable_asset()?;
let mut executor = new_executor::<T>(unlocker.clone());
// We first place the asset in lock first...
<T::XcmConfig as xcm_executor::Config>::AssetLocker::prepare_lock(
unlocker,
asset.clone(),
owner.clone(),
)
.map_err(|_| BenchmarkError::Skip)?
.enact()
.map_err(|_| BenchmarkError::Skip)?;
// ... then unlock them with the UnlockAsset instruction.
let instruction = Instruction::UnlockAsset { asset, target: owner };
let xcm = Xcm(vec![instruction]);
}: {
executor.bench_process(xcm)?;
} verify {
}
note_unlockable {
use xcm_executor::traits::{AssetLock, Enact};
let (unlocker, owner, asset) = T::unlockable_asset()?;
let mut executor = new_executor::<T>(unlocker.clone());
// We first place the asset in lock first...
<T::XcmConfig as xcm_executor::Config>::AssetLocker::prepare_lock(
unlocker,
asset.clone(),
owner.clone(),
)
.map_err(|_| BenchmarkError::Skip)?
.enact()
.map_err(|_| BenchmarkError::Skip)?;
// ... then note them as unlockable with the NoteUnlockable instruction.
let instruction = Instruction::NoteUnlockable { asset, owner };
let xcm = Xcm(vec![instruction]);
}: {
executor.bench_process(xcm)?;
} verify {
}
request_unlock {
use xcm_executor::traits::{AssetLock, Enact};
let (locker, owner, asset) = T::unlockable_asset()?;
// We first place the asset in lock first...
<T::XcmConfig as xcm_executor::Config>::AssetLocker::prepare_lock(
locker.clone(),
asset.clone(),
owner.clone(),
)
.map_err(|_| BenchmarkError::Skip)?
.enact()
.map_err(|_| BenchmarkError::Skip)?;
// ... then request for an unlock with the RequestUnlock instruction.
let mut executor = new_executor::<T>(owner);
let instruction = Instruction::RequestUnlock { asset, locker };
let xcm = Xcm(vec![instruction]);
}: {
executor.bench_process(xcm)?;
} verify {
// TODO: Potentially add new trait to XcmSender to detect a queued outgoing message. #4426
}
unpaid_execution {
let mut executor = new_executor::<T>(Default::default());
executor.set_origin(Some(Here.into()));
let instruction = Instruction::<XcmCallOf<T>>::UnpaidExecution {
weight_limit: WeightLimit::Unlimited,
check_origin: Some(Here.into()),
};
let xcm = Xcm(vec![instruction]);
}: {
executor.bench_process(xcm)?;
}
alias_origin {
let (origin, target) = T::alias_origin().map_err(|_| BenchmarkError::Skip)?;
let mut executor = new_executor::<T>(origin);
let instruction = Instruction::AliasOrigin(target.clone());
let xcm = Xcm(vec![instruction]);
}: {
executor.bench_process(xcm)?;
} verify {
assert_eq!(executor.origin(), &Some(target));
}
impl_benchmark_test_suite!(
Pallet,
crate::generic::mock::new_test_ext(),
crate::generic::mock::Test
);
}