Newer
Older
// Copyright 2020-2021 Parity Technologies (UK) Ltd.
// This file is part of Cumulus.
// Substrate is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Substrate is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Cumulus. If not, see <http://www.gnu.org/licenses/>.
//! Helper datatypes for cumulus. This includes the [`ParentAsUmp`] routing type which will route
//! messages into an [`UpwardMessageSender`] if the destination is `Parent`.
#![cfg_attr(not(feature = "std"), no_std)]
use cumulus_primitives_core::{MessageSendError, UpwardMessageSender};
use frame_support::{
traits::{
tokens::{fungibles, fungibles::Inspect},
Get,
},
weights::Weight,
};
use polkadot_runtime_common::xcm_sender::ConstantPrice;
use sp_runtime::{traits::Saturating, SaturatedConversion};
use sp_std::{marker::PhantomData, prelude::*};
use xcm::{latest::prelude::*, WrapVersion};
use xcm_builder::TakeRevenue;
use xcm_executor::traits::{MatchesFungibles, TransactAsset, WeightTrader};
pub trait PriceForParentDelivery {
fn price_for_parent_delivery(message: &Xcm<()>) -> MultiAssets;
}
impl PriceForParentDelivery for () {
fn price_for_parent_delivery(_: &Xcm<()>) -> MultiAssets {
MultiAssets::new()
}
}
impl<T: Get<MultiAssets>> PriceForParentDelivery for ConstantPrice<T> {
fn price_for_parent_delivery(_: &Xcm<()>) -> MultiAssets {
T::get()
}
}
/// Xcm router which recognises the `Parent` destination and handles it by sending the message into
/// the given UMP `UpwardMessageSender` implementation. Thus this essentially adapts an
/// `UpwardMessageSender` trait impl into a `SendXcm` trait impl.
///
/// NOTE: This is a pretty dumb "just send it" router; we will probably want to introduce queuing
/// to UMP eventually and when we do, the pallet which implements the queuing will be responsible
/// for the `SendXcm` implementation.
pub struct ParentAsUmp<T, W, P>(PhantomData<(T, W, P)>);
impl<T, W, P> SendXcm for ParentAsUmp<T, W, P>
where
T: UpwardMessageSender,
W: WrapVersion,
P: PriceForParentDelivery,
{
type Ticket = Vec<u8>;
fn validate(
dest: &mut Option<MultiLocation>,
msg: &mut Option<Xcm<()>>,
) -> SendResult<Vec<u8>> {
let d = dest.take().ok_or(SendError::MissingArgument)?;
let xcm = msg.take().ok_or(SendError::MissingArgument)?;
let price = P::price_for_parent_delivery(&xcm);
W::wrap_version(&d, xcm).map_err(|()| SendError::DestinationUnsupported)?;
let data = versioned_xcm.encode();
// Anything else is unhandled. This includes a message that is not meant for us.
// We need to make sure that dest/msg is not consumed here.
*dest = Some(d);
Err(SendError::NotApplicable)
fn deliver(data: Vec<u8>) -> Result<XcmHash, SendError> {
let (_, hash) = T::send_upward_message(data).map_err(|e| match e {
MessageSendError::TooBig => SendError::ExceedsMaxMessageSize,
e => SendError::Transport(e.into()),
})?;
Ok(hash)
}
/// Contains information to handle refund/payment for xcm-execution
#[derive(Clone, Eq, PartialEq, Debug)]
struct AssetTraderRefunder {
// The amount of weight bought minus the weigh already refunded
weight_outstanding: Weight,
// The concrete asset containing the asset location and outstanding balance
outstanding_concrete_asset: MultiAsset,
}
/// Charges for execution in the first multiasset of those selected for fee payment
/// Only succeeds for Concrete Fungible Assets
/// First tries to convert the this MultiAsset into a local assetId
/// Then charges for this assetId as described by FeeCharger
/// Weight, paid balance, local asset Id and the multilocation is stored for
/// later refund purposes
/// Important: Errors if the Trader is being called twice by 2 BuyExecution instructions
/// Alternatively we could just return payment in the aforementioned case
pub struct TakeFirstAssetTrader<
AccountId,
FeeCharger: ChargeWeightInFungibles<AccountId, ConcreteAssets>,
Matcher: MatchesFungibles<ConcreteAssets::AssetId, ConcreteAssets::Balance>,
ConcreteAssets: fungibles::Mutate<AccountId> + fungibles::Balanced<AccountId>,
HandleRefund: TakeRevenue,
>(
Option<AssetTraderRefunder>,
PhantomData<(AccountId, FeeCharger, Matcher, ConcreteAssets, HandleRefund)>,
);
impl<
AccountId,
FeeCharger: ChargeWeightInFungibles<AccountId, ConcreteAssets>,
Matcher: MatchesFungibles<ConcreteAssets::AssetId, ConcreteAssets::Balance>,
ConcreteAssets: fungibles::Mutate<AccountId> + fungibles::Balanced<AccountId>,
HandleRefund: TakeRevenue,
> WeightTrader
for TakeFirstAssetTrader<AccountId, FeeCharger, Matcher, ConcreteAssets, HandleRefund>
{
fn new() -> Self {
Self(None, PhantomData)
}
// We take first multiasset
// Check whether we can convert fee to asset_fee (is_sufficient, min_deposit)
// If everything goes well, we charge.
fn buy_weight(
&mut self,
payment: xcm_executor::Assets,
) -> Result<xcm_executor::Assets, XcmError> {
log::trace!(target: "xcm::weight", "TakeFirstAssetTrader::buy_weight weight: {:?}, payment: {:?}", weight, payment);
// Make sure we dont enter twice
if self.0.is_some() {
return Err(XcmError::NotWithdrawable)
}
// We take the very first multiasset from payment
// (assets are sorted by fungibility/amount after this conversion)
let multiassets: MultiAssets = payment.clone().into();
// Take the first multiasset from the selected MultiAssets
let first = multiassets.get(0).ok_or(XcmError::AssetNotFound)?;
// Get the local asset id in which we can pay for fees
let (local_asset_id, _) =
Matcher::matches_fungibles(first).map_err(|_| XcmError::AssetNotFound)?;
// Calculate how much we should charge in the asset_id for such amount of weight
// Require at least a payment of minimum_balance
// Necessary for fully collateral-backed assets
let asset_balance: u128 =
FeeCharger::charge_weight_in_fungibles(local_asset_id.clone(), weight)
.map(|amount| {
let minimum_balance = ConcreteAssets::minimum_balance(local_asset_id);
if amount < minimum_balance {
minimum_balance
} else {
amount
}
})?
.try_into()
.map_err(|_| XcmError::Overflow)?;
// Convert to the same kind of multiasset, with the required fungible balance
let required = first.id.into_multiasset(asset_balance.into());
// Substract payment
let unused = payment.checked_sub(required.clone()).map_err(|_| XcmError::TooExpensive)?;
// record weight and multiasset
self.0 = Some(AssetTraderRefunder {
weight_outstanding: weight,
outstanding_concrete_asset: required,
});
Ok(unused)
}
fn refund_weight(&mut self, weight: Weight) -> Option<MultiAsset> {
log::trace!(target: "xcm::weight", "TakeFirstAssetTrader::refund_weight weight: {:?}", weight);
if let Some(AssetTraderRefunder {
mut weight_outstanding,
outstanding_concrete_asset: MultiAsset { id, fun },
}) = self.0.clone()
{
// Get the local asset id in which we can refund fees
let (local_asset_id, outstanding_balance) =
Matcher::matches_fungibles(&(id, fun).into()).ok()?;
let minimum_balance = ConcreteAssets::minimum_balance(local_asset_id.clone());
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
// Calculate asset_balance
// This read should have already be cached in buy_weight
let (asset_balance, outstanding_minus_substracted) =
FeeCharger::charge_weight_in_fungibles(local_asset_id, weight).ok().map(
|asset_balance| {
// Require at least a drop of minimum_balance
// Necessary for fully collateral-backed assets
if outstanding_balance.saturating_sub(asset_balance) > minimum_balance {
(asset_balance, outstanding_balance.saturating_sub(asset_balance))
}
// If the amount to be refunded leaves the remaining balance below ED,
// we just refund the exact amount that guarantees at least ED will be
// dropped
else {
(outstanding_balance.saturating_sub(minimum_balance), minimum_balance)
}
},
)?;
// Convert balances into u128
let outstanding_minus_substracted: u128 =
outstanding_minus_substracted.saturated_into();
let asset_balance: u128 = asset_balance.saturated_into();
// Construct outstanding_concrete_asset with the same location id and substracted balance
let outstanding_concrete_asset: MultiAsset = (id, outstanding_minus_substracted).into();
// Substract from existing weight and balance
weight_outstanding = weight_outstanding.saturating_sub(weight);
// Override AssetTraderRefunder
self.0 = Some(AssetTraderRefunder { weight_outstanding, outstanding_concrete_asset });
// Only refund if positive
if asset_balance > 0 {
Some((id, asset_balance).into())
} else {
None
}
} else {
None
}
}
}
impl<
AccountId,
FeeCharger: ChargeWeightInFungibles<AccountId, ConcreteAssets>,
Matcher: MatchesFungibles<ConcreteAssets::AssetId, ConcreteAssets::Balance>,
ConcreteAssets: fungibles::Mutate<AccountId> + fungibles::Balanced<AccountId>,
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
HandleRefund: TakeRevenue,
> Drop for TakeFirstAssetTrader<AccountId, FeeCharger, Matcher, ConcreteAssets, HandleRefund>
{
fn drop(&mut self) {
if let Some(asset_trader) = self.0.clone() {
HandleRefund::take_revenue(asset_trader.outstanding_concrete_asset);
}
}
}
/// XCM fee depositor to which we implement the TakeRevenue trait
/// It receives a Transact implemented argument, a 32 byte convertible acocuntId, and the fee receiver account
/// FungiblesMutateAdapter should be identical to that implemented by WithdrawAsset
pub struct XcmFeesTo32ByteAccount<FungiblesMutateAdapter, AccountId, ReceiverAccount>(
PhantomData<(FungiblesMutateAdapter, AccountId, ReceiverAccount)>,
);
impl<
FungiblesMutateAdapter: TransactAsset,
AccountId: Clone + Into<[u8; 32]>,
ReceiverAccount: frame_support::traits::Get<Option<AccountId>>,
> TakeRevenue for XcmFeesTo32ByteAccount<FungiblesMutateAdapter, AccountId, ReceiverAccount>
{
fn take_revenue(revenue: MultiAsset) {
if let Some(receiver) = ReceiverAccount::get() {
let ok = FungiblesMutateAdapter::deposit_asset(
&revenue,
&(X1(AccountId32 { network: None, id: receiver.into() }).into()),
// We aren't able to track the XCM that initiated the fee deposit, so we create a
// fake message hash here
&XcmContext::with_message_hash([0; 32]),
)
.is_ok();
debug_assert!(ok, "`deposit_asset` cannot generally fail; qed");
}
}
}
/// ChargeWeightInFungibles trait, which converts a given amount of weight
/// and an assetId, and it returns the balance amount that should be charged
/// in such assetId for that amount of weight
pub trait ChargeWeightInFungibles<AccountId, Assets: fungibles::Inspect<AccountId>> {
fn charge_weight_in_fungibles(
asset_id: <Assets as Inspect<AccountId>>::AssetId,
weight: Weight,
) -> Result<<Assets as Inspect<AccountId>>::Balance, XcmError>;
}
#[cfg(test)]
mod tests {
use super::*;
use cumulus_primitives_core::UpwardMessage;
use frame_support::{
assert_ok,
dispatch::DispatchError,
traits::tokens::{
DepositConsequence, Fortitude, Preservation, Provenance, WithdrawConsequence,
},
};
use xcm_executor::{traits::Error, Assets};
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
/// Validates [`validate`] for required Some(destination) and Some(message)
struct OkFixedXcmHashWithAssertingRequiredInputsSender;
impl OkFixedXcmHashWithAssertingRequiredInputsSender {
const FIXED_XCM_HASH: [u8; 32] = [9; 32];
fn fixed_delivery_asset() -> MultiAssets {
MultiAssets::new()
}
fn expected_delivery_result() -> Result<(XcmHash, MultiAssets), SendError> {
Ok((Self::FIXED_XCM_HASH, Self::fixed_delivery_asset()))
}
}
impl SendXcm for OkFixedXcmHashWithAssertingRequiredInputsSender {
type Ticket = ();
fn validate(
destination: &mut Option<MultiLocation>,
message: &mut Option<Xcm<()>>,
) -> SendResult<Self::Ticket> {
assert!(destination.is_some());
assert!(message.is_some());
Ok(((), OkFixedXcmHashWithAssertingRequiredInputsSender::fixed_delivery_asset()))
}
fn deliver(_: Self::Ticket) -> Result<XcmHash, SendError> {
Ok(Self::FIXED_XCM_HASH)
}
}
/// Impl [`UpwardMessageSender`] that return `Other` error
struct OtherErrorUpwardMessageSender;
impl UpwardMessageSender for OtherErrorUpwardMessageSender {
fn send_upward_message(_: UpwardMessage) -> Result<(u32, XcmHash), MessageSendError> {
Err(MessageSendError::Other)
}
}
#[test]
fn parent_as_ump_does_not_consume_dest_or_msg_on_not_applicable() {
// dummy message
let message = Xcm(vec![Trap(5)]);
// ParentAsUmp - check dest is really not applicable
let dest = (Parent, Parent, Parent);
let mut msg_wrapper = Some(message.clone());
assert_eq!(
Err(SendError::NotApplicable),
<ParentAsUmp<(), (), ()> as SendXcm>::validate(&mut dest_wrapper, &mut msg_wrapper)
);
// check wrapper were not consumed
assert_eq!(Some(dest.into()), dest_wrapper.take());
assert_eq!(Some(message.clone()), msg_wrapper.take());
// another try with router chain with asserting sender
assert_eq!(
OkFixedXcmHashWithAssertingRequiredInputsSender::expected_delivery_result(),
send_xcm::<(ParentAsUmp<(), (), ()>, OkFixedXcmHashWithAssertingRequiredInputsSender)>(
dest.into(),
message
)
);
}
#[test]
fn parent_as_ump_consumes_dest_and_msg_on_ok_validate() {
// dummy message
let message = Xcm(vec![Trap(5)]);
// ParentAsUmp - check dest/msg is valid
let dest = (Parent, Here);
let mut msg_wrapper = Some(message.clone());
assert!(<ParentAsUmp<(), (), ()> as SendXcm>::validate(
&mut dest_wrapper,
&mut msg_wrapper
)
.is_ok());
// check wrapper were consumed
assert_eq!(None, dest_wrapper.take());
assert_eq!(None, msg_wrapper.take());
// another try with router chain with asserting sender
assert_eq!(
Err(SendError::Transport("Other")),
send_xcm::<(
ParentAsUmp<OtherErrorUpwardMessageSender, (), ()>,
OkFixedXcmHashWithAssertingRequiredInputsSender
)>(dest.into(), message)
);
}
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
#[test]
fn take_first_asset_trader_buy_weight_called_twice_throws_error() {
const AMOUNT: u128 = 100;
// prepare prerequisites to instantiate `TakeFirstAssetTrader`
type TestAccountId = u32;
type TestAssetId = u32;
type TestBalance = u128;
struct TestAssets;
impl MatchesFungibles<TestAssetId, TestBalance> for TestAssets {
fn matches_fungibles(a: &MultiAsset) -> Result<(TestAssetId, TestBalance), Error> {
match a {
MultiAsset { fun: Fungible(amount), id: Concrete(_id) } => Ok((1, *amount)),
_ => Err(Error::AssetNotHandled),
}
}
}
impl fungibles::Inspect<TestAccountId> for TestAssets {
type AssetId = TestAssetId;
type Balance = TestBalance;
fn total_issuance(_: Self::AssetId) -> Self::Balance {
todo!()
}
fn minimum_balance(_: Self::AssetId) -> Self::Balance {
0
}
fn balance(_: Self::AssetId, _: &TestAccountId) -> Self::Balance {
todo!()
}
fn total_balance(_: Self::AssetId, _: &TestAccountId) -> Self::Balance {
todo!()
}
fn reducible_balance(
_: Self::AssetId,
_: &TestAccountId,
_: Preservation,
_: Fortitude,
) -> Self::Balance {
todo!()
}
fn can_deposit(
_: Self::AssetId,
_: &TestAccountId,
_: Self::Balance,
) -> DepositConsequence {
todo!()
}
fn can_withdraw(
_: Self::AssetId,
_: &TestAccountId,
_: Self::Balance,
) -> WithdrawConsequence<Self::Balance> {
todo!()
}
fn asset_exists(_: Self::AssetId) -> bool {
todo!()
}
}
impl fungibles::Mutate<TestAccountId> for TestAssets {}
impl fungibles::Balanced<TestAccountId> for TestAssets {
type OnDropCredit = fungibles::DecreaseIssuance<TestAccountId, Self>;
type OnDropDebt = fungibles::IncreaseIssuance<TestAccountId, Self>;
impl fungibles::Unbalanced<TestAccountId> for TestAssets {
fn handle_dust(_: fungibles::Dust<TestAccountId, Self>) {
_: Self::AssetId,
_: &TestAccountId,
_: Self::Balance,
) -> Result<Option<Self::Balance>, DispatchError> {
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
todo!()
}
fn set_total_issuance(_: Self::AssetId, _: Self::Balance) {
todo!()
}
}
struct FeeChargerAssetsHandleRefund;
impl ChargeWeightInFungibles<TestAccountId, TestAssets> for FeeChargerAssetsHandleRefund {
fn charge_weight_in_fungibles(
_: <TestAssets as Inspect<TestAccountId>>::AssetId,
_: Weight,
) -> Result<<TestAssets as Inspect<TestAccountId>>::Balance, XcmError> {
Ok(AMOUNT)
}
}
impl TakeRevenue for FeeChargerAssetsHandleRefund {
fn take_revenue(_: MultiAsset) {}
}
// create new instance
type Trader = TakeFirstAssetTrader<
TestAccountId,
FeeChargerAssetsHandleRefund,
TestAssets,
TestAssets,
FeeChargerAssetsHandleRefund,
>;
let mut trader = <Trader as WeightTrader>::new();
// prepare test data
let asset: MultiAsset = (Here, AMOUNT).into();
let weight_to_buy = Weight::from_parts(1_000, 1_000);
// lets do first call (success)
assert_ok!(trader.buy_weight(weight_to_buy, payment.clone()));
// lets do second call (error)
assert_eq!(trader.buy_weight(weight_to_buy, payment), Err(XcmError::NotWithdrawable));