Newer
Older
// Copyright (C) Parity Technologies (UK) Ltd.
// This file is part of Cumulus.
// Substrate is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Substrate is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Cumulus. If not, see <http://www.gnu.org/licenses/>.
//! A pallet which uses the XCMP transport layer to handle both incoming and outgoing XCM message
//! sending and dispatch, queuing, signalling and backpressure. To do so, it implements:
//! * `XcmpMessageHandler`
//! * `XcmpMessageSource`
//!
//! Also provides an implementation of `SendXcm` which can be placed in a router tuple for relaying
//! XCM over XCMP if the destination is `Parent/Parachain`. It requires an implementation of
//! `XcmExecutor` for dispatching incoming XCM messages.
//!
//! To prevent out of memory errors on the `OutboundXcmpMessages` queue, an exponential fee factor
//! (`DeliveryFeeFactor`) is set, much like the one used in DMP.
//! The fee factor increases whenever the total size of messages in a particular channel passes a
//! threshold. This threshold is defined as a percentage of the maximum total size the channel can
//! have. More concretely, the threshold is `max_total_size` / `THRESHOLD_FACTOR`, where:
//! - `max_total_size` is the maximum size, in bytes, of the channel, not number of messages.
//! It is defined in the channel configuration.
//! - `THRESHOLD_FACTOR` just declares which percentage of the max size is the actual threshold.
//! If it's 2, then the threshold is half of the max size, if it's 4, it's a quarter, and so on.
#![cfg_attr(not(feature = "std"), no_std)]
#[cfg(test)]
mod mock;
#[cfg(test)]
mod tests;
#[cfg(feature = "runtime-benchmarks")]
mod benchmarking;
Adrian Catangiu
committed
#[cfg(feature = "bridging")]
pub mod bridging;
pub mod weights;
pub use weights::WeightInfo;
use bounded_collections::BoundedBTreeSet;
use codec::{Decode, DecodeLimit, Encode};
relay_chain::BlockNumber as RelayBlockNumber, ChannelStatus, GetChannelInfo, MessageSendError,
ParaId, XcmpMessageFormat, XcmpMessageHandler, XcmpMessageSource,
use frame_support::{
defensive, defensive_assert,
traits::{EnqueueMessage, EnsureOrigin, Get, QueueFootprint, QueuePausedQuery},
BoundedVec,
};
use pallet_message_queue::OnQueueChanged;
use polkadot_runtime_common::xcm_sender::PriceForMessageDelivery;
use polkadot_runtime_parachains::FeeTracker;
use sp_core::MAX_POSSIBLE_ALLOCATION;
use sp_runtime::{FixedU128, RuntimeDebug, Saturating};
use sp_std::prelude::*;
use xcm::{latest::prelude::*, VersionedXcm, WrapVersion, MAX_XCM_DECODE_DEPTH};
use xcm_executor::traits::ConvertOrigin;
/// Index used to identify overweight XCMs.
pub type OverweightIndex = u64;
/// The max length of an XCMP message.
pub type MaxXcmpMessageLenOf<T> =
<<T as Config>::XcmpQueue as EnqueueMessage<ParaId>>::MaxMessageLen;
const LOG_TARGET: &str = "xcmp_queue";
const DEFAULT_POV_SIZE: u64 = 64 * 1024; // 64 KB
/// Constants related to delivery fee calculation
pub mod delivery_fee_constants {
use super::FixedU128;
/// Fees will start increasing when queue is half full
pub const THRESHOLD_FACTOR: u32 = 2;
/// The base number the delivery fee factor gets multiplied by every time it is increased.
/// Also, the number it gets divided by when decreased.
pub const EXPONENTIAL_FEE_BASE: FixedU128 = FixedU128::from_rational(105, 100); // 1.05
/// The contribution of each KB to a fee factor increase
pub const MESSAGE_SIZE_FEE_BASE: FixedU128 = FixedU128::from_rational(1, 1000); // 0.001
}
#[frame_support::pallet]
pub mod pallet {
use super::*;
use frame_support::{pallet_prelude::*, Twox64Concat};
use frame_system::pallet_prelude::*;
#[pallet::pallet]
#[pallet::storage_version(migration::STORAGE_VERSION)]
#[pallet::without_storage_info]
pub struct Pallet<T>(_);
#[pallet::config]
pub trait Config: frame_system::Config {
type RuntimeEvent: From<Event<Self>> + IsType<<Self as frame_system::Config>::RuntimeEvent>;
/// Information on the available XCMP channels.
/// Means of converting an `Xcm` into a `VersionedXcm`.
type VersionWrapper: WrapVersion;
/// Enqueue an inbound horizontal message for later processing.
///
/// This defines the maximal message length via [`crate::MaxXcmpMessageLenOf`]. The pallet
/// assumes that this hook will eventually process all the pushed messages.
type XcmpQueue: EnqueueMessage<ParaId>;
/// The maximum number of inbound XCMP channels that can be suspended simultaneously.
///
/// Any further channel suspensions will fail and messages may get dropped without further
/// notice. Choosing a high value (1000) is okay; the trade-off that is described in
/// [`InboundXcmpSuspended`] still applies at that scale.
#[pallet::constant]
type MaxInboundSuspended: Get<u32>;
/// The origin that is allowed to resume or suspend the XCMP queue.
type ControllerOrigin: EnsureOrigin<Self::RuntimeOrigin>;
/// The conversion function used to attempt to convert an XCM `Location` origin to a
/// superuser origin.
type ControllerOriginConverter: ConvertOrigin<Self::RuntimeOrigin>;
/// The price for delivering an XCM to a sibling parachain destination.
type PriceForSiblingDelivery: PriceForMessageDelivery<Id = ParaId>;
/// The weight information of this pallet.
type WeightInfo: WeightInfo;
impl<T: Config> Pallet<T> {
/// Suspends all XCM executions for the XCMP queue, regardless of the sender's origin.
///
/// - `origin`: Must pass `ControllerOrigin`.
#[pallet::call_index(1)]
#[pallet::weight((T::DbWeight::get().writes(1), DispatchClass::Operational,))]
pub fn suspend_xcm_execution(origin: OriginFor<T>) -> DispatchResult {
T::ControllerOrigin::ensure_origin(origin)?;
QueueSuspended::<T>::try_mutate(|suspended| {
if *suspended {
Err(Error::<T>::AlreadySuspended.into())
} else {
*suspended = true;
Ok(())
}
})
}
/// Resumes all XCM executions for the XCMP queue.
///
/// Note that this function doesn't change the status of the in/out bound channels.
///
/// - `origin`: Must pass `ControllerOrigin`.
#[pallet::call_index(2)]
#[pallet::weight((T::DbWeight::get().writes(1), DispatchClass::Operational,))]
pub fn resume_xcm_execution(origin: OriginFor<T>) -> DispatchResult {
T::ControllerOrigin::ensure_origin(origin)?;
QueueSuspended::<T>::try_mutate(|suspended| {
if !*suspended {
Err(Error::<T>::AlreadyResumed.into())
} else {
*suspended = false;
Ok(())
}
})
}
/// Overwrites the number of pages which must be in the queue for the other side to be
/// told to suspend their sending.
///
/// - `origin`: Must pass `Root`.
/// - `new`: Desired value for `QueueConfigData.suspend_value`
#[pallet::call_index(3)]
#[pallet::weight((T::WeightInfo::set_config_with_u32(), DispatchClass::Operational,))]
pub fn update_suspend_threshold(origin: OriginFor<T>, new: u32) -> DispatchResult {
ensure_root(origin)?;
QueueConfig::<T>::try_mutate(|data| {
data.suspend_threshold = new;
data.validate::<T>()
})
/// Overwrites the number of pages which must be in the queue after which we drop any
/// further messages from the channel.
///
/// - `origin`: Must pass `Root`.
/// - `new`: Desired value for `QueueConfigData.drop_threshold`
#[pallet::call_index(4)]
#[pallet::weight((T::WeightInfo::set_config_with_u32(),DispatchClass::Operational,))]
pub fn update_drop_threshold(origin: OriginFor<T>, new: u32) -> DispatchResult {
ensure_root(origin)?;
QueueConfig::<T>::try_mutate(|data| {
data.drop_threshold = new;
data.validate::<T>()
})
/// Overwrites the number of pages which the queue must be reduced to before it signals
/// that message sending may recommence after it has been suspended.
///
/// - `origin`: Must pass `Root`.
/// - `new`: Desired value for `QueueConfigData.resume_threshold`
#[pallet::call_index(5)]
#[pallet::weight((T::WeightInfo::set_config_with_u32(), DispatchClass::Operational,))]
pub fn update_resume_threshold(origin: OriginFor<T>, new: u32) -> DispatchResult {
ensure_root(origin)?;
QueueConfig::<T>::try_mutate(|data| {
data.resume_threshold = new;
data.validate::<T>()
})
#[pallet::hooks]
impl<T: Config> Hooks<BlockNumberFor<T>> for Pallet<T> {
fn integrity_test() {
let w = Self::on_idle_weight();
assert!(w != Weight::zero());
assert!(w.all_lte(T::BlockWeights::get().max_block));
fn on_idle(_block: BlockNumberFor<T>, limit: Weight) -> Weight {
let mut meter = WeightMeter::with_limit(limit);
if meter.try_consume(Self::on_idle_weight()).is_err() {
log::debug!(
"Not enough weight for on_idle. {} < {}",
Self::on_idle_weight(),
limit
);
return meter.consumed()
}
migration::v3::lazy_migrate_inbound_queue::<T>();
meter.consumed()
#[pallet::event]
#[pallet::generate_deposit(pub(super) fn deposit_event)]
pub enum Event<T: Config> {
/// An HRMP message was sent to a sibling parachain.
Gavin Wood
committed
XcmpMessageSent { message_hash: XcmHash },
}
#[pallet::error]
pub enum Error<T> {
/// Setting the queue config failed since one of its values was invalid.
BadQueueConfig,
/// The execution is already suspended.
AlreadySuspended,
/// The execution is already resumed.
AlreadyResumed,
/// The suspended inbound XCMP channels. All others are not suspended.
///
/// This is a `StorageValue` instead of a `StorageMap` since we expect multiple reads per block
/// to different keys with a one byte payload. The access to `BoundedBTreeSet` will be cached
/// within the block and therefore only included once in the proof size.
///
/// NOTE: The PoV benchmarking cannot know this and will over-estimate, but the actual proof
/// will be smaller.
pub type InboundXcmpSuspended<T: Config> =
StorageValue<_, BoundedBTreeSet<ParaId, T::MaxInboundSuspended>, ValueQuery>;
/// The non-empty XCMP channels in order of becoming non-empty, and the index of the first
/// and last outbound message. If the two indices are equal, then it indicates an empty
/// queue and there must be a non-`Ok` `OutboundStatus`. We assume queues grow no greater
/// than 65535 items. Queue indices for normal messages begin at one; zero is reserved in
/// case of the need to send a high-priority signal message this block.
/// The bool is true if there is a signal message waiting to be sent.
#[pallet::storage]
pub(super) type OutboundXcmpStatus<T: Config> =
StorageValue<_, Vec<OutboundChannelDetails>, ValueQuery>;
// The new way of doing it:
/// The messages outbound in a given XCMP channel.
#[pallet::storage]
pub(super) type OutboundXcmpMessages<T: Config> =
StorageDoubleMap<_, Blake2_128Concat, ParaId, Twox64Concat, u16, Vec<u8>, ValueQuery>;
/// Any signal messages waiting to be sent.
#[pallet::storage]
pub(super) type SignalMessages<T: Config> =
StorageMap<_, Blake2_128Concat, ParaId, Vec<u8>, ValueQuery>;
/// The configuration which controls the dynamics of the outbound queue.
#[pallet::storage]
pub(super) type QueueConfig<T: Config> = StorageValue<_, QueueConfigData, ValueQuery>;
/// Whether or not the XCMP queue is suspended from executing incoming XCMs or not.
#[pallet::storage]
pub(super) type QueueSuspended<T: Config> = StorageValue<_, bool, ValueQuery>;
/// Initialization value for the DeliveryFee factor.
#[pallet::type_value]
pub fn InitialFactor() -> FixedU128 {
FixedU128::from_u32(1)
}
/// The factor to multiply the base delivery fee by.
#[pallet::storage]
pub(super) type DeliveryFeeFactor<T: Config> =
StorageMap<_, Twox64Concat, ParaId, FixedU128, ValueQuery, InitialFactor>;
#[derive(Copy, Clone, Eq, PartialEq, Encode, Decode, RuntimeDebug, TypeInfo)]
/// Struct containing detailed information about the outbound channel.
#[derive(Clone, Eq, PartialEq, Encode, Decode, TypeInfo)]
#[cfg_attr(feature = "std", derive(Debug))]
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
pub struct OutboundChannelDetails {
/// The `ParaId` of the parachain that this channel is connected with.
recipient: ParaId,
/// The state of the channel.
state: OutboundState,
/// Whether or not any signals exist in this channel.
signals_exist: bool,
/// The index of the first outbound message.
first_index: u16,
/// The index of the last outbound message.
last_index: u16,
}
impl OutboundChannelDetails {
pub fn new(recipient: ParaId) -> OutboundChannelDetails {
OutboundChannelDetails {
recipient,
state: OutboundState::Ok,
signals_exist: false,
first_index: 0,
last_index: 0,
}
}
pub fn with_signals(mut self) -> OutboundChannelDetails {
self.signals_exist = true;
self
}
pub fn with_suspended_state(mut self) -> OutboundChannelDetails {
self.state = OutboundState::Suspended;
self
}
}
#[derive(Copy, Clone, Eq, PartialEq, Encode, Decode, RuntimeDebug, TypeInfo)]
/// The number of pages which must be in the queue for the other side to be told to suspend
/// their sending.
/// The number of pages which must be in the queue after which we drop any further messages
/// from the channel. This should normally not happen since the `suspend_threshold` can be used
/// to suspend the channel.
/// The number of pages which the queue must be reduced to before it signals that
/// message sending may recommence after it has been suspended.
resume_threshold: u32,
}
impl Default for QueueConfigData {
fn default() -> Self {
// NOTE that these default values are only used on genesis. They should give a rough idea of
// what to set these values to, but is in no way a requirement.
drop_threshold: 48, // 64KiB * 48 = 3MiB
suspend_threshold: 32, // 64KiB * 32 = 2MiB
resume_threshold: 8, // 64KiB * 8 = 512KiB
impl QueueConfigData {
/// Validate all assumptions about `Self`.
///
/// Should be called prior to accepting this as new config.
pub fn validate<T: crate::Config>(&self) -> sp_runtime::DispatchResult {
if self.resume_threshold < self.suspend_threshold &&
self.suspend_threshold <= self.drop_threshold &&
self.resume_threshold > 0
{
Ok(())
} else {
Err(Error::<T>::BadQueueConfig.into())
}
}
}
#[derive(PartialEq, Eq, Copy, Clone, Encode, Decode, TypeInfo)]
pub enum ChannelSignal {
Suspend,
Resume,
}
/// Place a message `fragment` on the outgoing XCMP queue for `recipient`.
///
/// Format is the type of aggregate message that the `fragment` may be safely encoded and
/// appended onto. Whether earlier unused space is used for the fragment at the risk of sending
/// it out of order is determined with `qos`. NOTE: For any two messages to be guaranteed to be
/// dispatched in order, then both must be sent with `ServiceQuality::Ordered`.
///
/// ## Background
///
/// For our purposes, one HRMP "message" is actually an aggregated block of XCM "messages".
///
/// For the sake of clarity, we distinguish between them as message AGGREGATEs versus
/// message FRAGMENTs.
///
/// So each AGGREGATE is comprised of one or more concatenated SCALE-encoded `Vec<u8>`
/// FRAGMENTs. Though each fragment is already probably a SCALE-encoded Xcm, we can't be
/// certain, so we SCALE encode each `Vec<u8>` fragment in order to ensure we have the
/// length prefixed and can thus decode each fragment from the aggregate stream. With this,
/// we can concatenate them into a single aggregate blob without needing to be concerned
/// about encoding fragment boundaries.
///
/// If successful, returns the number of pages in the outbound queue after enqueuing the new
/// fragment.
fn send_fragment<Fragment: Encode>(
recipient: ParaId,
format: XcmpMessageFormat,
fragment: Fragment,
) -> Result<u32, MessageSendError> {
let encoded_fragment = fragment.encode();
// Optimization note: `max_message_size` could potentially be stored in
// `OutboundXcmpMessages` once known; that way it's only accessed when a new page is needed.
let channel_info =
T::ChannelInfo::get_channel_info(recipient).ok_or(MessageSendError::NoChannel)?;
// Max message size refers to aggregates, or pages. Not to individual fragments.
let max_message_size = channel_info.max_message_size as usize;
let format_size = format.encoded_size();
// We check the encoded fragment length plus the format size against the max message size
// because the format is concatenated if a new page is needed.
let size_to_check = encoded_fragment
.len()
.checked_add(format_size)
.ok_or(MessageSendError::TooBig)?;
if size_to_check > max_message_size {
let mut all_channels = <OutboundXcmpStatus<T>>::get();
let channel_details = if let Some(details) =
all_channels.iter_mut().find(|channel| channel.recipient == recipient)
{
all_channels.push(OutboundChannelDetails::new(recipient));
all_channels
.last_mut()
.expect("can't be empty; a new element was just pushed; qed")
let have_active = channel_details.last_index > channel_details.first_index;
// Try to append fragment to the last page, if there is enough space.
// We return the size of the last page inside of the option, to not calculate it again.
let appended_to_last_page = have_active
.then(|| {
<OutboundXcmpMessages<T>>::mutate(
recipient,
channel_details.last_index - 1,
|page| {
if XcmpMessageFormat::decode_with_depth_limit(
MAX_XCM_DECODE_DEPTH,
&mut &page[..],
) != Ok(format)
{
defensive!("Bad format in outbound queue; dropping message");
return None
}
if page.len() + encoded_fragment.len() > max_message_size {
return None
}
page.extend_from_slice(&encoded_fragment[..]);
Some(page.len())
},
)
})
.flatten();
let (number_of_pages, last_page_size) = if let Some(size) = appended_to_last_page {
let number_of_pages = (channel_details.last_index - channel_details.first_index) as u32;
(number_of_pages, size)
let page_index = channel_details.last_index;
channel_details.last_index += 1;
new_page.extend_from_slice(&encoded_fragment[..]);
let last_page_size = new_page.len();
let number_of_pages = (channel_details.last_index - channel_details.first_index) as u32;
<OutboundXcmpMessages<T>>::insert(recipient, page_index, new_page);
<OutboundXcmpStatus<T>>::put(all_channels);
(number_of_pages, last_page_size)
};
// We have to count the total size here since `channel_info.total_size` is not updated at
// this point in time. We assume all previous pages are filled, which, in practice, is not
// always the case.
let total_size =
number_of_pages.saturating_sub(1) * max_message_size as u32 + last_page_size as u32;
let threshold = channel_info.max_total_size / delivery_fee_constants::THRESHOLD_FACTOR;
if total_size > threshold {
let message_size_factor = FixedU128::from((encoded_fragment.len() / 1024) as u128)
.saturating_mul(delivery_fee_constants::MESSAGE_SIZE_FEE_BASE);
Self::increase_fee_factor(recipient, message_size_factor);
}
/// Sends a signal to the `dest` chain over XCMP. This is guaranteed to be dispatched on this
/// block.
fn send_signal(dest: ParaId, signal: ChannelSignal) {
let mut s = <OutboundXcmpStatus<T>>::get();
if let Some(details) = s.iter_mut().find(|item| item.recipient == dest) {
details.signals_exist = true;
s.push(OutboundChannelDetails::new(dest).with_signals());
<SignalMessages<T>>::mutate(dest, |page| {
*page = (XcmpMessageFormat::Signals, signal).encode();
});
}
fn suspend_channel(target: ParaId) {
if let Some(details) = s.iter_mut().find(|item| item.recipient == target) {
let ok = details.state == OutboundState::Ok;
defensive_assert!(ok, "WARNING: Attempt to suspend channel that was not Ok.");
s.push(OutboundChannelDetails::new(target).with_suspended_state());
}
});
}
fn resume_channel(target: ParaId) {
if let Some(index) = s.iter().position(|item| item.recipient == target) {
let suspended = s[index].state == OutboundState::Suspended;
defensive_assert!(
suspended,
"WARNING: Attempt to resume channel that was not suspended."
);
if s[index].first_index == s[index].last_index {
s[index].state = OutboundState::Ok;
defensive!("WARNING: Attempt to resume channel that was not suspended.");
Adrian Catangiu
committed
fn enqueue_xcmp_message(
sender: ParaId,
xcm: BoundedVec<u8, MaxXcmpMessageLenOf<T>>,
meter: &mut WeightMeter,
) -> Result<(), ()> {
if meter.try_consume(T::WeightInfo::enqueue_xcmp_message()).is_err() {
defensive!("Out of weight: cannot enqueue XCMP messages; dropping msg");
return Err(())
}
let QueueConfigData { drop_threshold, .. } = <QueueConfig<T>>::get();
let fp = T::XcmpQueue::footprint(sender);
// Assume that it will not fit into the current page:
let new_pages = fp.ready_pages.saturating_add(1);
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
if new_pages > drop_threshold {
// This should not happen since the channel should have been suspended in
// [`on_queue_changed`].
log::error!("XCMP queue for sibling {:?} is full; dropping messages.", sender);
return Err(())
}
T::XcmpQueue::enqueue_message(xcm.as_bounded_slice(), sender);
Ok(())
}
/// Split concatenated encoded `VersionedXcm`s or `MaybeDoubleEncodedVersionedXcm`s into
/// individual items.
///
/// We directly encode them again since that is needed later on.
pub(crate) fn take_first_concatenated_xcm(
data: &mut &[u8],
meter: &mut WeightMeter,
) -> Result<BoundedVec<u8, MaxXcmpMessageLenOf<T>>, ()> {
if data.is_empty() {
return Err(())
}
if meter.try_consume(T::WeightInfo::take_first_concatenated_xcm()).is_err() {
defensive!("Out of weight; could not decode all; dropping");
return Err(())
}
let xcm = VersionedXcm::<()>::decode_with_depth_limit(MAX_XCM_DECODE_DEPTH, data)
.map_err(|_| ())?;
xcm.encode().try_into().map_err(|_| ())
}
/// The worst-case weight of `on_idle`.
pub fn on_idle_weight() -> Weight {
<T as crate::Config>::WeightInfo::on_idle_good_msg()
.max(<T as crate::Config>::WeightInfo::on_idle_large_msg())
}
Adrian Catangiu
committed
#[cfg(feature = "bridging")]
fn is_inbound_channel_suspended(sender: ParaId) -> bool {
<InboundXcmpSuspended<T>>::get().iter().any(|c| c == &sender)
Adrian Catangiu
committed
}
#[cfg(feature = "bridging")]
/// Returns tuple of `OutboundState` and number of queued pages.
fn outbound_channel_state(target: ParaId) -> Option<(OutboundState, u16)> {
<OutboundXcmpStatus<T>>::get().iter().find(|c| c.recipient == target).map(|c| {
let queued_pages = c.last_index.saturating_sub(c.first_index);
(c.state, queued_pages)
})
}
impl<T: Config> OnQueueChanged<ParaId> for Pallet<T> {
// Suspends/Resumes the queue when certain thresholds are reached.
fn on_queue_changed(para: ParaId, fp: QueueFootprint) {
let QueueConfigData { resume_threshold, suspend_threshold, .. } = <QueueConfig<T>>::get();
let mut suspended_channels = <InboundXcmpSuspended<T>>::get();
let suspended = suspended_channels.contains(¶);
if suspended && fp.ready_pages <= resume_threshold {
Self::send_signal(para, ChannelSignal::Resume);
suspended_channels.remove(¶);
<InboundXcmpSuspended<T>>::put(suspended_channels);
} else if !suspended && fp.ready_pages >= suspend_threshold {
log::warn!("XCMP queue for sibling {:?} is full; suspending channel.", para);
Self::send_signal(para, ChannelSignal::Suspend);
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
if let Err(err) = suspended_channels.try_insert(para) {
log::error!("Too many channels suspended; cannot suspend sibling {:?}: {:?}; further messages may be dropped.", para, err);
}
<InboundXcmpSuspended<T>>::put(suspended_channels);
}
}
}
impl<T: Config> QueuePausedQuery<ParaId> for Pallet<T> {
fn is_paused(para: &ParaId) -> bool {
if !QueueSuspended::<T>::get() {
return false
}
// Make an exception for the superuser queue:
let sender_origin = T::ControllerOriginConverter::convert_origin(
(Parent, Parachain((*para).into())),
OriginKind::Superuser,
);
let is_controller =
sender_origin.map_or(false, |origin| T::ControllerOrigin::try_origin(origin).is_ok());
!is_controller
}
}
impl<T: Config> XcmpMessageHandler for Pallet<T> {
fn handle_xcmp_messages<'a, I: Iterator<Item = (ParaId, RelayBlockNumber, &'a [u8])>>(
iter: I,
max_weight: Weight,
) -> Weight {
let mut meter = WeightMeter::with_limit(max_weight);
for (sender, _sent_at, mut data) in iter {
let format = match XcmpMessageFormat::decode(&mut data) {
defensive!("Unknown XCMP message format - dropping");
match format {
XcmpMessageFormat::Signals =>
while !data.is_empty() {
if meter
.try_consume(
T::WeightInfo::suspend_channel()
.max(T::WeightInfo::resume_channel()),
)
.is_err()
{
defensive!("Not enough weight to process signals - dropping");
break
match ChannelSignal::decode(&mut data) {
Ok(ChannelSignal::Suspend) => Self::suspend_channel(sender),
Ok(ChannelSignal::Resume) => Self::resume_channel(sender),
Err(_) => {
defensive!("Undecodable channel signal - dropping");
break
},
},
XcmpMessageFormat::ConcatenatedVersionedXcm =>
while !data.is_empty() {
let Ok(xcm) = Self::take_first_concatenated_xcm(&mut data, &mut meter)
else {
defensive!("HRMP inbound decode stream broke; page will be dropped.",);
break
};
if let Err(()) = Self::enqueue_xcmp_message(sender, xcm, &mut meter) {
defensive!(
"Could not enqueue XCMP messages. Used weight: ",
meter.consumed_ratio()
);
break
XcmpMessageFormat::ConcatenatedEncodedBlob => {
defensive!("Blob messages are unhandled - dropping");
continue
},
meter.consumed()
impl<T: Config> XcmpMessageSource for Pallet<T> {
fn take_outbound_messages(maximum_channels: usize) -> Vec<(ParaId, Vec<u8>)> {
let mut statuses = <OutboundXcmpStatus<T>>::get();
let old_statuses_len = statuses.len();
let max_message_count = statuses.len().min(maximum_channels);
let mut result = Vec::with_capacity(max_message_count);
for status in statuses.iter_mut() {
let OutboundChannelDetails {
recipient: para_id,
state: outbound_state,
mut signals_exist,
mut first_index,
mut last_index,
} = *status;
let (max_size_now, max_size_ever) = match T::ChannelInfo::get_channel_status(para_id) {
ChannelStatus::Closed => {
// This means that there is no such channel anymore. Nothing to be done but
// swallow the messages and discard the status.
for i in first_index..last_index {
<OutboundXcmpMessages<T>>::remove(para_id, i);
*status = OutboundChannelDetails::new(para_id);
ChannelStatus::Full => continue,
ChannelStatus::Ready(n, e) => (n, e),
};
// This is a hard limit from the host config; not even signals can bypass it.
if result.len() == max_message_count {
// We check this condition in the beginning of the loop so that we don't include
// a message where the limit is 0.
break
}
let page = <SignalMessages<T>>::get(para_id);
defensive_assert!(!page.is_empty(), "Signals must exist");
defensive!("Signals should fit into a single page");
} else if outbound_state == OutboundState::Suspended {
// Signals are exempt from suspension.
continue
} else if last_index > first_index {
let page = <OutboundXcmpMessages<T>>::get(para_id, first_index);
<OutboundXcmpMessages<T>>::remove(para_id, first_index);
first_index += 1;
if first_index == last_index {
first_index = 0;
last_index = 0;
}
if page.len() > max_size_ever {
// TODO: #274 This means that the channel's max message size has changed since
// the message was sent. We should parse it and split into smaller messages but
// since it's so unlikely then for now we just drop it.
defensive!("WARNING: oversize message in queue - dropping");
result.push((para_id, page));
let max_total_size = match T::ChannelInfo::get_channel_info(para_id) {
Some(channel_info) => channel_info.max_total_size,
None => {
log::warn!("calling `get_channel_info` with no RelevantMessagingState?!");
MAX_POSSIBLE_ALLOCATION // We use this as a fallback in case the messaging state is not present
},
};
let threshold = max_total_size.saturating_div(delivery_fee_constants::THRESHOLD_FACTOR);
let remaining_total_size: usize = (first_index..last_index)
.map(|index| OutboundXcmpMessages::<T>::decode_len(para_id, index).unwrap())
.sum();
if remaining_total_size <= threshold as usize {
Self::decrease_fee_factor(para_id);
}
*status = OutboundChannelDetails {
recipient: para_id,
state: outbound_state,
signals_exist,
first_index,
last_index,
};
debug_assert!(!statuses.iter().any(|s| s.signals_exist), "Signals should be handled");
// Sort the outbound messages by ascending recipient para id to satisfy the acceptance
// criteria requirement.
result.sort_by_key(|m| m.0);
// Prune hrmp channels that became empty. Additionally, because it may so happen that we
// only gave attention to some channels in `non_empty_hrmp_channels` it's important to
// change the order. Otherwise, the next `on_finalize` we will again give attention
// only to those channels that happen to be in the beginning, until they are emptied.
// This leads to "starvation" of the channels near to the end.
//
// To mitigate this we shift all processed elements towards the end of the vector using
// `rotate_left`. To get intuition how it works see the examples in its rustdoc.
statuses.retain(|x| {
x.state == OutboundState::Suspended || x.signals_exist || x.first_index < x.last_index
});
// old_status_len must be >= status.len() since we never add anything to status.
let pruned = old_statuses_len - statuses.len();
// removing an item from status implies a message being sent, so the result messages must
// be no less than the pruned channels.
statuses.rotate_left(result.len().saturating_sub(pruned));
result
}
}
/// Xcm sender for sending to a sibling parachain.
type Ticket = (ParaId, VersionedXcm<()>);
fn validate(
msg: &mut Option<Xcm<()>>,
) -> SendResult<(ParaId, VersionedXcm<()>)> {
let d = dest.take().ok_or(SendError::MissingArgument)?;
// An HRMP message for a sibling parachain.
let xcm = msg.take().ok_or(SendError::MissingArgument)?;
let id = ParaId::from(*id);
let price = T::PriceForSiblingDelivery::price_for_delivery(id, &xcm);
let versioned_xcm = T::VersionWrapper::wrap_version(&d, xcm)
.map_err(|()| SendError::DestinationUnsupported)?;
Branislav Kontur
committed
versioned_xcm
.validate_xcm_nesting()
.map_err(|()| SendError::ExceedsMaxMessageSize)?;
Ok(((id, versioned_xcm), price))
},
_ => {
// Anything else is unhandled. This includes a message that is not meant for us.
// We need to make sure that dest/msg is not consumed here.
*dest = Some(d);
Err(SendError::NotApplicable)
},
}
}
fn deliver((id, xcm): (ParaId, VersionedXcm<()>)) -> Result<XcmHash, SendError> {
let hash = xcm.using_encoded(sp_io::hashing::blake2_256);
match Self::send_fragment(id, XcmpMessageFormat::ConcatenatedVersionedXcm, xcm) {
Ok(_) => {
Gavin Wood
committed
Self::deposit_event(Event::XcmpMessageSent { message_hash: hash });
Adrian Catangiu
committed
Err(e) => {
log::error!(target: LOG_TARGET, "Deliver error: {e:?}");
Err(SendError::Transport(e.into()))
},
impl<T: Config> FeeTracker for Pallet<T> {
type Id = ParaId;
fn get_fee_factor(id: Self::Id) -> FixedU128 {
<DeliveryFeeFactor<T>>::get(id)
}
fn increase_fee_factor(id: Self::Id, message_size_factor: FixedU128) -> FixedU128 {
<DeliveryFeeFactor<T>>::mutate(id, |f| {
*f = f.saturating_mul(
delivery_fee_constants::EXPONENTIAL_FEE_BASE.saturating_add(message_size_factor),
);
*f
})
}
fn decrease_fee_factor(id: Self::Id) -> FixedU128 {
<DeliveryFeeFactor<T>>::mutate(id, |f| {
*f = InitialFactor::get().max(*f / delivery_fee_constants::EXPONENTIAL_FEE_BASE);
*f
})
}
}