Newer
Older
// Copyright 2020-2021 Parity Technologies (UK) Ltd.
// This file is part of Cumulus.
// Substrate is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Substrate is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Cumulus. If not, see <http://www.gnu.org/licenses/>.
//! A pallet which uses the XCMP transport layer to handle both incoming and outgoing XCM message
//! sending and dispatch, queuing, signalling and backpressure. To do so, it implements:
//! * `XcmpMessageHandler`
//! * `XcmpMessageSource`
//!
//! Also provides an implementation of `SendXcm` which can be placed in a router tuple for relaying
//! XCM over XCMP if the destination is `Parent/Parachain`. It requires an implementation of
//! `XcmExecutor` for dispatching incoming XCM messages.
#![cfg_attr(not(feature = "std"), no_std)]
#[cfg(test)]
mod mock;
#[cfg(test)]
mod tests;
use codec::{Decode, DecodeAll, DecodeLimit, Encode};
relay_chain::BlockNumber as RelayBlockNumber, ChannelStatus, GetChannelInfo, MessageSendError,
ParaId, XcmpMessageFormat, XcmpMessageHandler, XcmpMessageSource,
};
use frame_support::weights::Weight;
use rand_chacha::{
rand_core::{RngCore, SeedableRng},
ChaChaRng,
use sp_runtime::{traits::Hash, RuntimeDebug};
use sp_std::{convert::TryFrom, prelude::*};
use xcm::{latest::prelude::*, VersionedXcm, WrapVersion, MAX_XCM_DECODE_DEPTH};
pub use pallet::*;
#[frame_support::pallet]
pub mod pallet {
use super::*;
use frame_support::pallet_prelude::*;
use frame_system::pallet_prelude::*;
#[pallet::pallet]
#[pallet::generate_store(pub(super) trait Store)]
pub struct Pallet<T>(_);
#[pallet::config]
pub trait Config: frame_system::Config {
type Event: From<Event<Self>> + IsType<<Self as frame_system::Config>::Event>;
/// Something to execute an XCM message. We need this to service the XCMoXCMP queue.
type XcmExecutor: ExecuteXcm<Self::Call>;
/// Information on the avaialble XCMP channels.
type ChannelInfo: GetChannelInfo;
/// Means of converting an `Xcm` into a `VersionedXcm`.
type VersionWrapper: WrapVersion;
impl Default for QueueConfigData {
fn default() -> Self {
Self {
suspend_threshold: 2,
drop_threshold: 5,
resume_threshold: 1,
threshold_weight: 100_000,
weight_restrict_decay: 2,
}
}
}
#[pallet::hooks]
impl<T: Config> Hooks<BlockNumberFor<T>> for Pallet<T> {
fn on_idle(_now: T::BlockNumber, max_weight: Weight) -> Weight {
// on_idle processes additional messages with any remaining block weight.
Self::service_xcmp_queue(max_weight)
}
}
#[pallet::call]
impl<T: Config> Pallet<T> {}
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#[pallet::event]
#[pallet::generate_deposit(pub(super) fn deposit_event)]
pub enum Event<T: Config> {
/// Some XCM was executed ok.
Success(Option<T::Hash>),
/// Some XCM failed.
Fail(Option<T::Hash>, XcmError),
/// Bad XCM version used.
BadVersion(Option<T::Hash>),
/// Bad XCM format used.
BadFormat(Option<T::Hash>),
/// An upward message was sent to the relay chain.
UpwardMessageSent(Option<T::Hash>),
/// An HRMP message was sent to a sibling parachain.
XcmpMessageSent(Option<T::Hash>),
}
#[pallet::error]
pub enum Error<T> {
/// Failed to send XCM message.
FailedToSend,
/// Bad XCM origin.
BadXcmOrigin,
/// Bad XCM data.
BadXcm,
}
/// Status of the inbound XCMP channels.
#[pallet::storage]
pub(super) type InboundXcmpStatus<T: Config> = StorageValue<
_,
Vec<(ParaId, InboundStatus, Vec<(RelayBlockNumber, XcmpMessageFormat)>)>,
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
ValueQuery,
>;
/// Inbound aggregate XCMP messages. It can only be one per ParaId/block.
#[pallet::storage]
pub(super) type InboundXcmpMessages<T: Config> = StorageDoubleMap<
_,
Blake2_128Concat,
ParaId,
Twox64Concat,
RelayBlockNumber,
Vec<u8>,
ValueQuery,
>;
/// The non-empty XCMP channels in order of becoming non-empty, and the index of the first
/// and last outbound message. If the two indices are equal, then it indicates an empty
/// queue and there must be a non-`Ok` `OutboundStatus`. We assume queues grow no greater
/// than 65535 items. Queue indices for normal messages begin at one; zero is reserved in
/// case of the need to send a high-priority signal message this block.
/// The bool is true if there is a signal message waiting to be sent.
#[pallet::storage]
pub(super) type OutboundXcmpStatus<T: Config> =
StorageValue<_, Vec<(ParaId, OutboundStatus, bool, u16, u16)>, ValueQuery>;
// The new way of doing it:
/// The messages outbound in a given XCMP channel.
#[pallet::storage]
pub(super) type OutboundXcmpMessages<T: Config> =
StorageDoubleMap<_, Blake2_128Concat, ParaId, Twox64Concat, u16, Vec<u8>, ValueQuery>;
/// Any signal messages waiting to be sent.
#[pallet::storage]
pub(super) type SignalMessages<T: Config> =
StorageMap<_, Blake2_128Concat, ParaId, Vec<u8>, ValueQuery>;
/// The configuration which controls the dynamics of the outbound queue.
#[pallet::storage]
pub(super) type QueueConfig<T: Config> = StorageValue<_, QueueConfigData, ValueQuery>;
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Encode, Decode, RuntimeDebug, TypeInfo)]
pub enum InboundStatus {
Ok,
Suspended,
}
#[derive(Copy, Clone, Eq, PartialEq, Encode, Decode, RuntimeDebug, TypeInfo)]
pub enum OutboundStatus {
Ok,
Suspended,
}
#[derive(Copy, Clone, Eq, PartialEq, Encode, Decode, RuntimeDebug, TypeInfo)]
pub struct QueueConfigData {
/// The number of pages of messages which must be in the queue for the other side to be told to
/// suspend their sending.
suspend_threshold: u32,
/// The number of pages of messages which must be in the queue after which we drop any further
/// messages from the channel.
drop_threshold: u32,
/// The number of pages of messages which the queue must be reduced to before it signals that
/// message sending may recommence after it has been suspended.
resume_threshold: u32,
/// The amount of remaining weight under which we stop processing messages.
threshold_weight: Weight,
/// The speed to which the available weight approaches the maximum weight. A lower number
/// results in a faster progression. A value of 1 makes the entire weight available initially.
weight_restrict_decay: Weight,
}
#[derive(PartialEq, Eq, Copy, Clone, Encode, Decode, TypeInfo)]
pub enum ChannelSignal {
Suspend,
Resume,
}
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/// Place a message `fragment` on the outgoing XCMP queue for `recipient`.
///
/// Format is the type of aggregate message that the `fragment` may be safely encoded and
/// appended onto. Whether earlier unused space is used for the fragment at the risk of sending
/// it out of order is determined with `qos`. NOTE: For any two messages to be guaranteed to be
/// dispatched in order, then both must be sent with `ServiceQuality::Ordered`.
///
/// ## Background
///
/// For our purposes, one HRMP "message" is actually an aggregated block of XCM "messages".
///
/// For the sake of clarity, we distinguish between them as message AGGREGATEs versus
/// message FRAGMENTs.
///
/// So each AGGREGATE is comprised of one or more concatenated SCALE-encoded `Vec<u8>`
/// FRAGMENTs. Though each fragment is already probably a SCALE-encoded Xcm, we can't be
/// certain, so we SCALE encode each `Vec<u8>` fragment in order to ensure we have the
/// length prefixed and can thus decode each fragment from the aggregate stream. With this,
/// we can concatenate them into a single aggregate blob without needing to be concerned
/// about encoding fragment boundaries.
fn send_fragment<Fragment: Encode>(
recipient: ParaId,
format: XcmpMessageFormat,
fragment: Fragment,
) -> Result<u32, MessageSendError> {
let data = fragment.encode();
// Optimization note: `max_message_size` could potentially be stored in
// `OutboundXcmpMessages` once known; that way it's only accessed when a new page is needed.
let max_message_size =
T::ChannelInfo::get_channel_max(recipient).ok_or(MessageSendError::NoChannel)?;
let mut s = <OutboundXcmpStatus<T>>::get();
let index = s.iter().position(|item| item.0 == recipient).unwrap_or_else(|| {
s.push((recipient, OutboundStatus::Ok, false, 0, 0));
s.len() - 1
});
let appended = have_active &&
<OutboundXcmpMessages<T>>::mutate(recipient, s[index].4 - 1, |s| {
if XcmpMessageFormat::decode_and_advance_with_depth_limit(
MAX_XCM_DECODE_DEPTH,
&mut &s[..],
) != Ok(format)
{
}
if s.len() + data.len() > max_message_size {
if appended {
Ok((s[index].4 - s[index].3 - 1) as u32)
} else {
// Need to add a new page.
let page_index = s[index].4;
s[index].4 += 1;
let mut new_page = format.encode();
new_page.extend_from_slice(&data[..]);
<OutboundXcmpMessages<T>>::insert(recipient, page_index, new_page);
let r = (s[index].4 - s[index].3 - 1) as u32;
Ok(r)
}
}
/// Sends a signal to the `dest` chain over XCMP. This is guaranteed to be dispatched on this
/// block.
fn send_signal(dest: ParaId, signal: ChannelSignal) -> Result<(), ()> {
let mut s = <OutboundXcmpStatus<T>>::get();
if let Some(index) = s.iter().position(|item| item.0 == dest) {
s[index].2 = true;
} else {
s.push((dest, OutboundStatus::Ok, true, 0, 0));
}
<SignalMessages<T>>::mutate(dest, |page| {
if page.is_empty() {
*page = (XcmpMessageFormat::Signals, signal).encode();
} else {
signal.using_encoded(|s| page.extend_from_slice(s));
}
pub fn send_blob_message(recipient: ParaId, blob: Vec<u8>) -> Result<u32, MessageSendError> {
Self::send_fragment(recipient, XcmpMessageFormat::ConcatenatedEncodedBlob, blob)
}
pub fn send_xcm_message(
recipient: ParaId,
xcm: VersionedXcm<()>,
) -> Result<u32, MessageSendError> {
Self::send_fragment(recipient, XcmpMessageFormat::ConcatenatedVersionedXcm, xcm)
}
fn create_shuffle(len: usize) -> Vec<usize> {
// Create a shuffled order for use to iterate through.
// Not a great random seed, but good enough for our purposes.
let seed = frame_system::Pallet::<T>::parent_hash();
let seed =
<[u8; 32]>::decode(&mut sp_runtime::traits::TrailingZeroInput::new(seed.as_ref()))
.expect("input is padded with zeroes; qed");
let mut rng = ChaChaRng::from_seed(seed);
let mut shuffled = (0..len).collect::<Vec<_>>();
for i in 0..len {
let j = (rng.next_u32() as usize) % len;
let a = shuffled[i];
shuffled[i] = shuffled[j];
shuffled[j] = a;
}
shuffled
}
fn handle_blob_message(
_sender: ParaId,
_sent_at: RelayBlockNumber,
_blob: Vec<u8>,
_weight_limit: Weight,
) -> Result<Weight, bool> {
debug_assert!(false, "Blob messages not handled.");
Err(false)
}
fn handle_xcm_message(
sender: ParaId,
_sent_at: RelayBlockNumber,
xcm: VersionedXcm<T::Call>,
max_weight: Weight,
) -> Result<Weight, XcmError> {
let hash = Encode::using_encoded(&xcm, T::Hashing::hash);
log::debug!("Processing XCMP-XCM: {:?}", &hash);
let (result, event) = match Xcm::<T::Call>::try_from(xcm) {
Ok(xcm) => {
let location = (1, Parachain(sender.into()));
match T::XcmExecutor::execute_xcm(location, xcm, max_weight) {
Outcome::Error(e) => (Err(e.clone()), Event::Fail(Some(hash), e)),
Outcome::Complete(w) => (Ok(w), Event::Success(Some(hash))),
// As far as the caller is concerned, this was dispatched without error, so
// we just report the weight used.
Outcome::Incomplete(w, e) => (Ok(w), Event::Fail(Some(hash), e)),
},
Err(()) => (Err(XcmError::UnhandledXcmVersion), Event::BadVersion(Some(hash))),
};
Self::deposit_event(event);
result
}
fn process_xcmp_message(
sender: ParaId,
(sent_at, format): (RelayBlockNumber, XcmpMessageFormat),
max_weight: Weight,
) -> (Weight, bool) {
let data = <InboundXcmpMessages<T>>::get(sender, sent_at);
let mut last_remaining_fragments;
let mut remaining_fragments = &data[..];
let mut weight_used = 0;
match format {
XcmpMessageFormat::ConcatenatedVersionedXcm => {
while !remaining_fragments.is_empty() {
last_remaining_fragments = remaining_fragments;
if let Ok(xcm) = VersionedXcm::<T::Call>::decode_and_advance_with_depth_limit(
MAX_XCM_DECODE_DEPTH,
&mut remaining_fragments,
) {
let weight = max_weight - weight_used;
match Self::handle_xcm_message(sender, sent_at, xcm, weight) {
Ok(used) => weight_used = weight_used.saturating_add(used),
Err(XcmError::TooMuchWeightRequired) => {
// That message didn't get processed this time because of being
// too heavy. We leave it around for next time and bail.
remaining_fragments = last_remaining_fragments;
Err(_) => {
// Message looks invalid; don't attempt to retry
}
} else {
debug_assert!(false, "Invalid incoming XCMP message data");
remaining_fragments = &b""[..];
}
}
XcmpMessageFormat::ConcatenatedEncodedBlob => {
while !remaining_fragments.is_empty() {
last_remaining_fragments = remaining_fragments;
if let Ok(blob) = <Vec<u8>>::decode_all(&mut remaining_fragments) {
let weight = max_weight - weight_used;
match Self::handle_blob_message(sender, sent_at, blob, weight) {
Ok(used) => weight_used = weight_used.saturating_add(used),
Err(true) => {
// That message didn't get processed this time because of being
// too heavy. We leave it around for next time and bail.
remaining_fragments = last_remaining_fragments;
Err(false) => {
// Message invalid; don't attempt to retry
}
} else {
debug_assert!(false, "Invalid incoming blob message data");
remaining_fragments = &b""[..];
}
}
XcmpMessageFormat::Signals => {
debug_assert!(false, "All signals are handled immediately; qed");
remaining_fragments = &b""[..];
}
let is_empty = remaining_fragments.is_empty();
if is_empty {
<InboundXcmpMessages<T>>::remove(sender, sent_at);
<InboundXcmpMessages<T>>::insert(sender, sent_at, remaining_fragments);
}
(weight_used, is_empty)
}
/// Service the incoming XCMP message queue attempting to execute up to `max_weight` execution
/// weight of messages.
///
/// Channels are first shuffled and then processed in this random one page at a time, order over
/// and over until either `max_weight` is exhausted or no channel has messages that can be
/// processed any more.
///
/// There are two obvious "modes" that we could apportion `max_weight`: one would be to attempt
/// to spend it all on the first channel's first page, then use the leftover (if any) for the
/// second channel's first page and so on until finally we cycle back and the process messages
/// on the first channel's second page &c. The other mode would be to apportion only `1/N` of
/// `max_weight` for the first page (where `N` could be, perhaps, the number of channels to
/// service, using the remainder plus the next `1/N` for the next channel's page &c.
///
/// Both modes have good qualities, the first ensures that a channel with a large message (over
/// `1/N` does not get indefinitely blocked if other channels have continuous, light traffic.
/// The second is fairer, and ensures that channels with continuous light messages don't suffer
/// high latency.
///
/// The following code is a hybrid solution; we have a concept of `weight_available` which
/// incrementally approaches `max_weight` as more channels are attempted to be processed. We use
/// the parameter `weight_restrict_decay` to control the speed with which `weight_available`
/// approaches `max_weight`, with `0` being strictly equivalent to the first aforementioned
/// mode, and `N` approximating the second. A reasonable parameter may be `1`, which makes
/// half of the `max_weight` available for the first page, then a quarter plus the remainder
/// for the second &c. though empirical and or practical factors may give rise to adjusting it
/// further.
fn service_xcmp_queue(max_weight: Weight) -> Weight {
let mut status = <InboundXcmpStatus<T>>::get(); // <- sorted.
let QueueConfigData { resume_threshold, threshold_weight, weight_restrict_decay, .. } =
<QueueConfig<T>>::get();
let mut shuffled = Self::create_shuffle(status.len());
let mut weight_used = 0;
let mut weight_available = 0;
// We don't want the possibility of a chain sending a series of really heavy messages and
// tying up the block's execution time from other chains. Therefore we execute any remaining
// messages in a random order.
// Order within a single channel will always be preserved, however this does mean that
// relative order between channels may not. The result is that chains which tend to send
// fewer, lighter messages will generally have a lower latency than chains which tend to
// send more, heavier messages.
let mut shuffle_index = 0;
while shuffle_index < shuffled.len() &&
max_weight.saturating_sub(weight_used) >= threshold_weight
let index = shuffled[shuffle_index];
let sender = status[index].0;
if weight_available != max_weight {
// Get incrementally closer to freeing up max_weight for message execution over the
// first round. For the second round we unlock all weight. If we come close enough
// on the first round to unlocking everything, then we do so.
if shuffle_index < status.len() {
weight_available +=
(max_weight - weight_available) / (weight_restrict_decay + 1);
if weight_available + threshold_weight > max_weight {
weight_available = max_weight;
}
} else {
weight_available = max_weight;
}
}
let weight_processed = if status[index].2.is_empty() {
debug_assert!(false, "channel exists in status; there must be messages; qed");
0
} else {
// Process up to one block's worth for now.
let weight_remaining = weight_available.saturating_sub(weight_used);
let (weight_processed, is_empty) =
Self::process_xcmp_message(sender, status[index].2[0], weight_remaining);
if is_empty {
status[index].2.remove(0);
}
weight_processed
};
weight_used += weight_processed;
if status[index].2.len() as u32 <= resume_threshold &&
status[index].1 == InboundStatus::Suspended
// Resume
let r = Self::send_signal(sender, ChannelSignal::Resume);
debug_assert!(r.is_ok(), "WARNING: Failed sending resume into suspended channel");
status[index].1 = InboundStatus::Ok;
}
// If there are more and we're making progress, we process them after we've given the
// other channels a look in. If we've still not unlocked all weight, then we set them
// up for processing a second time anyway.
if !status[index].2.is_empty() &&
(weight_processed > 0 || weight_available != max_weight)
if shuffle_index + 1 == shuffled.len() {
// Only this queue left. Just run around this loop once more.
}
shuffled.push(index);
}
shuffle_index += 1;
}
// Only retain the senders that have non-empty queues.
status.retain(|item| !item.2.is_empty());
weight_used
}
fn suspend_channel(target: ParaId) {
if let Some(index) = s.iter().position(|item| item.0 == target) {
let ok = s[index].1 == OutboundStatus::Ok;
debug_assert!(ok, "WARNING: Attempt to suspend channel that was not Ok.");
s[index].1 = OutboundStatus::Suspended;
} else {
s.push((target, OutboundStatus::Suspended, false, 0, 0));
}
});
}
fn resume_channel(target: ParaId) {
if let Some(index) = s.iter().position(|item| item.0 == target) {
let suspended = s[index].1 == OutboundStatus::Suspended;
debug_assert!(
suspended,
"WARNING: Attempt to resume channel that was not suspended."
);
if s[index].3 == s[index].4 {
s.remove(index);
} else {
s[index].1 = OutboundStatus::Ok;
}
} else {
debug_assert!(false, "WARNING: Attempt to resume channel that was not suspended.");
impl<T: Config> XcmpMessageHandler for Pallet<T> {
fn handle_xcmp_messages<'a, I: Iterator<Item = (ParaId, RelayBlockNumber, &'a [u8])>>(
iter: I,
max_weight: Weight,
) -> Weight {
let mut status = <InboundXcmpStatus<T>>::get();
let QueueConfigData { suspend_threshold, drop_threshold, .. } = <QueueConfig<T>>::get();
for (sender, sent_at, data) in iter {
// Figure out the message format.
let mut data_ref = data;
let format = match XcmpMessageFormat::decode_and_advance_with_depth_limit(
MAX_XCM_DECODE_DEPTH,
&mut data_ref,
) {
debug_assert!(false, "Unknown XCMP message format. Silently dropping message");
continue
},
};
if format == XcmpMessageFormat::Signals {
while !data_ref.is_empty() {
use ChannelSignal::*;
match ChannelSignal::decode(&mut data_ref) {
Ok(Suspend) => Self::suspend_channel(sender),
Ok(Resume) => Self::resume_channel(sender),
Err(_) => break,
}
}
} else {
// Record the fact we received it.
match status.binary_search_by_key(&sender, |item| item.0) {
Ok(i) => {
let count = status[i].2.len();
if count as u32 >= suspend_threshold && status[i].1 == InboundStatus::Ok {
status[i].1 = InboundStatus::Suspended;
let r = Self::send_signal(sender, ChannelSignal::Suspend);
if r.is_err() {
log::warn!(
"Attempt to suspend channel failed. Messages may be dropped."
);
}
}
if (count as u32) < drop_threshold {
status[i].2.push((sent_at, format));
} else {
debug_assert!(
false,
"XCMP channel queue full. Silently dropping message"
);
Err(_) => status.push((sender, InboundStatus::Ok, vec![(sent_at, format)])),
}
// Queue the payload for later execution.
<InboundXcmpMessages<T>>::insert(sender, sent_at, data_ref);
}
// Optimization note; it would make sense to execute messages immediately if
// `status.is_empty()` here.
}
status.sort();
Self::service_xcmp_queue(max_weight)
}
}
impl<T: Config> XcmpMessageSource for Pallet<T> {
fn take_outbound_messages(maximum_channels: usize) -> Vec<(ParaId, Vec<u8>)> {
let mut statuses = <OutboundXcmpStatus<T>>::get();
let old_statuses_len = statuses.len();
let max_message_count = statuses.len().min(maximum_channels);
let mut result = Vec::with_capacity(max_message_count);
for status in statuses.iter_mut() {
let (para_id, outbound_status, mut signalling, mut begin, mut end) = *status;
if result.len() == max_message_count {
// We check this condition in the beginning of the loop so that we don't include
// a message where the limit is 0.
}
if outbound_status == OutboundStatus::Suspended {
}
let (max_size_now, max_size_ever) = match T::ChannelInfo::get_channel_status(para_id) {
ChannelStatus::Closed => {
// This means that there is no such channel anymore. Nothing to be done but
// swallow the messages and discard the status.
for i in begin..end {
<OutboundXcmpMessages<T>>::remove(para_id, i);
}
*status = (para_id, OutboundStatus::Ok, false, 0, 0);
ChannelStatus::Full => continue,
ChannelStatus::Ready(n, e) => (n, e),
};
let page = if signalling {
let page = <SignalMessages<T>>::get(para_id);
let page = <OutboundXcmpMessages<T>>::get(para_id, begin);
<OutboundXcmpMessages<T>>::remove(para_id, begin);
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
};
if begin == end {
begin = 0;
end = 0;
}
if page.len() > max_size_ever {
// TODO: #274 This means that the channel's max message size has changed since
// the message was sent. We should parse it and split into smaller mesasges but
// since it's so unlikely then for now we just drop it.
log::warn!("WARNING: oversize message in queue. silently dropping.");
} else {
result.push((para_id, page));
}
*status = (para_id, outbound_status, signalling, begin, end);
}
// Sort the outbound messages by ascending recipient para id to satisfy the acceptance
// criteria requirement.
result.sort_by_key(|m| m.0);
// Prune hrmp channels that became empty. Additionally, because it may so happen that we
// only gave attention to some channels in `non_empty_hrmp_channels` it's important to
// change the order. Otherwise, the next `on_finalize` we will again give attention
// only to those channels that happen to be in the beginning, until they are emptied.
// This leads to "starvation" of the channels near to the end.
//
// To mitigate this we shift all processed elements towards the end of the vector using
// `rotate_left`. To get intuition how it works see the examples in its rustdoc.
statuses.retain(|x| x.1 == OutboundStatus::Suspended || x.2 || x.3 < x.4);
// old_status_len must be >= status.len() since we never add anything to status.
let pruned = old_statuses_len - statuses.len();
// removing an item from status implies a message being sent, so the result messages must
// be no less than the pruned channels.
statuses.rotate_left(result.len() - pruned);
result
}
}
/// Xcm sender for sending to a sibling parachain.
fn send_xcm(dest: impl Into<MultiLocation>, msg: Xcm<()>) -> Result<(), SendError> {
let dest = dest.into();
match &dest {
// An HRMP message for a sibling parachain.
MultiLocation { parents: 1, interior: X1(Parachain(id)) } => {
let versioned_xcm = T::VersionWrapper::wrap_version(&dest, msg)
.map_err(|()| SendError::DestinationUnsupported)?;
let hash = T::Hashing::hash_of(&versioned_xcm);
Self::send_fragment(
(*id).into(),
XcmpMessageFormat::ConcatenatedVersionedXcm,
.map_err(|e| SendError::Transport(<&'static str>::from(e)))?;
Self::deposit_event(Event::XcmpMessageSent(Some(hash)));
// Anything else is unhandled. This includes a message this is meant for us.
_ => Err(SendError::CannotReachDestination(dest, msg)),