Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
// Copyright 2020-2021 Parity Technologies (UK) Ltd.
// This file is part of Cumulus.
// Substrate is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Substrate is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Cumulus. If not, see <http://www.gnu.org/licenses/>.
//! A pallet which uses the XCMP transport layer to handle both incoming and outgoing XCM message
//! sending and dispatch, queuing, signalling and backpressure. To do so, it implements:
//! * `XcmpMessageHandler`
//! * `XcmpMessageSource`
//!
//! Also provides an implementation of `SendXcm` which can be placed in a router tuple for relaying
//! XCM over XCMP if the destination is `Parent/Parachain`. It requires an implementation of
//! `XcmExecutor` for dispatching incoming XCM messages.
#![cfg_attr(not(feature = "std"), no_std)]
use sp_std::{prelude::*, convert::TryFrom};
use rand_chacha::{rand_core::{RngCore, SeedableRng}, ChaChaRng};
use codec::{Decode, Encode};
use sp_runtime::{RuntimeDebug, traits::Hash};
use frame_support::{decl_error, decl_event, decl_module, decl_storage, dispatch::Weight};
use xcm::{
VersionedXcm, v0::{
Error as XcmError, ExecuteXcm, Junction, MultiLocation, SendXcm, Outcome, Xcm,
},
};
use cumulus_primitives_core::{
XcmpMessageHandler, ParaId, XcmpMessageSource, ChannelStatus, MessageSendError, GetChannelInfo,
relay_chain::BlockNumber as RelayBlockNumber,
};
pub trait Config: frame_system::Config {
type Event: From<Event<Self>> + Into<<Self as frame_system::Config>::Event>;
/// Something to execute an XCM message. We need this to service the XCMoXCMP queue.
type XcmExecutor: ExecuteXcm<Self::Call>;
/// Information on the avaialble XCMP channels.
type ChannelInfo: GetChannelInfo;
}
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Encode, Decode, RuntimeDebug)]
pub enum InboundStatus {
Ok,
Suspended,
}
#[derive(Copy, Clone, Eq, PartialEq, Encode, Decode, RuntimeDebug)]
pub enum OutboundStatus {
Ok,
Suspended,
}
#[derive(Copy, Clone, Eq, PartialEq, Encode, Decode, RuntimeDebug)]
pub struct QueueConfigData {
/// The number of pages of messages which must be in the queue for the other side to be told to
/// suspend their sending.
suspend_threshold: u32,
/// The number of pages of messages which must be in the queue after which we drop any further
/// messages from the channel.
drop_threshold: u32,
/// The number of pages of messages which the queue must be reduced to before it signals that
/// message sending may recommence after it has been suspended.
resume_threshold: u32,
// The amount of remaining weight under which we stop processing messages.
threshold_weight: Weight,
/// The speed to which the available weight approaches the maximum weight. A lower number
/// results in a faster progression. A value of 1 makes the entire weight available initially.
weight_restrict_decay: Weight,
}
impl Default for QueueConfigData {
fn default() -> Self {
Self {
suspend_threshold: 2,
drop_threshold: 5,
resume_threshold: 1,
threshold_weight: 100_000,
weight_restrict_decay: 2,
}
}
}
decl_storage! {
trait Store for Module<T: Config> as XcmHandler {
/// Status of the inbound XCMP channels.
InboundXcmpStatus: Vec<(ParaId, InboundStatus, Vec<(RelayBlockNumber, XcmpMessageFormat)>)>;
/// Inbound aggregate XCMP messages. It can only be one per ParaId/block.
InboundXcmpMessages: double_map hasher(blake2_128_concat) ParaId,
hasher(twox_64_concat) RelayBlockNumber
=> Vec<u8>;
/// The non-empty XCMP channels in order of becoming non-empty, and the index of the first
/// and last outbound message. If the two indices are equal, then it indicates an empty
/// queue and there must be a non-`Ok` `OutboundStatus`. We assume queues grow no greater
/// than 65535 items. Queue indices for normal messages begin at one; zero is reserved in
/// case of the need to send a high-priority signal message this block.
/// The bool is true if there is a signal message waiting to be sent.
OutboundXcmpStatus: Vec<(ParaId, OutboundStatus, bool, u16, u16)>;
// The new way of doing it:
/// The messages outbound in a given XCMP channel.
OutboundXcmpMessages: double_map hasher(blake2_128_concat) ParaId,
hasher(twox_64_concat) u16 => Vec<u8>;
/// Any signal messages waiting to be sent.
SignalMessages: map hasher(blake2_128_concat) ParaId => Vec<u8>;
/// The configuration which controls the dynamics of the outbound queue.
QueueConfig: QueueConfigData;
}
}
decl_event! {
pub enum Event<T> where Hash = <T as frame_system::Config>::Hash {
/// Some XCM was executed ok.
Success(Option<Hash>),
/// Some XCM failed.
Fail(Option<Hash>, XcmError),
/// Bad XCM version used.
BadVersion(Option<Hash>),
/// Bad XCM format used.
BadFormat(Option<Hash>),
/// An upward message was sent to the relay chain.
UpwardMessageSent(Option<Hash>),
/// An HRMP message was sent to a sibling parachain.
XcmpMessageSent(Option<Hash>),
}
}
decl_error! {
pub enum Error for Module<T: Config> {
/// Failed to send XCM message.
FailedToSend,
/// Bad XCM origin.
BadXcmOrigin,
/// Bad XCM data.
BadXcm,
}
}
decl_module! {
pub struct Module<T: Config> for enum Call where origin: T::Origin {
type Error = Error<T>;
fn deposit_event() = default;
fn on_idle(_now: T::BlockNumber, max_weight: Weight) -> Weight {
// on_idle processes additional messages with any remaining block weight.
Self::service_xcmp_queue(max_weight)
}
}
}
#[derive(PartialEq, Eq, Copy, Clone, Encode, Decode)]
pub enum ChannelSignal {
Suspend,
Resume,
}
/// The aggregate XCMP message format.
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Encode, Decode)]
pub enum XcmpMessageFormat {
/// Encoded `VersionedXcm` messages, all concatenated.
ConcatenatedVersionedXcm,
/// Encoded `Vec<u8>` messages, all concatenated.
ConcatenatedEncodedBlob,
/// One or more channel control signals; these should be interpreted immediately upon receipt
/// from the relay-chain.
Signals,
}
impl<T: Config> Module<T> {
/// Place a message `fragment` on the outgoing XCMP queue for `recipient`.
///
/// Format is the type of aggregate message that the `fragment` may be safely encoded and
/// appended onto. Whether earlier unused space is used for the fragment at the risk of sending
/// it out of order is determined with `qos`. NOTE: For any two messages to be guaranteed to be
/// dispatched in order, then both must be sent with `ServiceQuality::Ordered`.
///
/// ## Background
///
/// For our purposes, one HRMP "message" is actually an aggregated block of XCM "messages".
///
/// For the sake of clarity, we distinguish between them as message AGGREGATEs versus
/// message FRAGMENTs.
///
/// So each AGGREGATE is comprised of one or more concatenated SCALE-encoded `Vec<u8>`
/// FRAGMENTs. Though each fragment is already probably a SCALE-encoded Xcm, we can't be
/// certain, so we SCALE encode each `Vec<u8>` fragment in order to ensure we have the
/// length prefixed and can thus decode each fragment from the aggregate stream. With this,
/// we can concatenate them into a single aggregate blob without needing to be concerned
/// about encoding fragment boundaries.
fn send_fragment<Fragment: Encode>(
recipient: ParaId,
format: XcmpMessageFormat,
fragment: Fragment,
) -> Result<u32, MessageSendError> {
let data = fragment.encode();
// Optimization note: `max_message_size` could potentially be stored in
// `OutboundXcmpMessages` once known; that way it's only accessed when a new page is needed.
let max_message_size = T::ChannelInfo::get_channel_max(recipient)
.ok_or(MessageSendError::NoChannel)?;
if data.len() > max_message_size {
return Err(MessageSendError::TooBig);
}
let mut s = OutboundXcmpStatus::get();
let index = s.iter().position(|item| item.0 == recipient)
.unwrap_or_else(|| {
s.push((recipient, OutboundStatus::Ok, false, 0, 0));
s.len() - 1
});
let have_active = s[index].4 > s[index].3;
let appended = have_active && OutboundXcmpMessages::mutate(recipient, s[index].4 - 1, |s| {
if XcmpMessageFormat::decode(&mut &s[..]) != Ok(format) { return false }
if s.len() + data.len() > max_message_size { return false }
s.extend_from_slice(&data[..]);
return true
});
if appended {
Ok((s[index].4 - s[index].3 - 1) as u32)
} else {
// Need to add a new page.
let page_index = s[index].4;
s[index].4 += 1;
let mut new_page = format.encode();
new_page.extend_from_slice(&data[..]);
OutboundXcmpMessages::insert(recipient, page_index, new_page);
let r = (s[index].4 - s[index].3 - 1) as u32;
OutboundXcmpStatus::put(s);
Ok(r)
}
}
/// Sends a signal to the `dest` chain over XCMP. This is guaranteed to be dispatched on this
/// block.
fn send_signal(dest: ParaId, signal: ChannelSignal) -> Result<(), ()> {
let mut s = OutboundXcmpStatus::get();
if let Some(index) = s.iter().position(|item| item.0 == dest) {
s[index].2 = true;
} else {
s.push((dest, OutboundStatus::Ok, true, 0, 0));
}
SignalMessages::mutate(dest, |page| if page.is_empty() {
*page = (XcmpMessageFormat::Signals, signal).encode();
} else {
signal.using_encoded(|s| page.extend_from_slice(s));
});
OutboundXcmpStatus::put(s);
Ok(())
}
pub fn send_blob_message(
recipient: ParaId,
blob: Vec<u8>,
) -> Result<u32, MessageSendError> {
Self::send_fragment(recipient, XcmpMessageFormat::ConcatenatedEncodedBlob, blob)
}
pub fn send_xcm_message(
recipient: ParaId,
xcm: VersionedXcm<()>,
) -> Result<u32, MessageSendError> {
Self::send_fragment(recipient, XcmpMessageFormat::ConcatenatedVersionedXcm, xcm)
}
fn create_shuffle(len: usize) -> Vec<usize> {
// Create a shuffled order for use to iterate through.
// Not a great random seed, but good enough for our purposes.
let seed = frame_system::Pallet::<T>::parent_hash();
let seed = <[u8; 32]>::decode(&mut sp_runtime::traits::TrailingZeroInput::new(seed.as_ref()))
.expect("input is padded with zeroes; qed");
let mut rng = ChaChaRng::from_seed(seed);
let mut shuffled = (0..len).collect::<Vec<_>>();
for i in 0..len {
let j = (rng.next_u32() as usize) % len;
let a = shuffled[i];
shuffled[i] = shuffled[j];
shuffled[j] = a;
}
shuffled
}
fn handle_blob_message(_sender: ParaId, _sent_at: RelayBlockNumber, _blob: Vec<u8>, _weight_limit: Weight) -> Result<Weight, bool> {
debug_assert!(false, "Blob messages not handled.");
Err(false)
}
fn handle_xcm_message(
sender: ParaId,
_sent_at: RelayBlockNumber,
xcm: VersionedXcm<T::Call>,
max_weight: Weight,
) -> Result<Weight, XcmError> {
let hash = Encode::using_encoded(&xcm, T::Hashing::hash);
log::debug!("Processing XCMP-XCM: {:?}", &hash);
let (result, event) = match Xcm::<T::Call>::try_from(xcm) {
Ok(xcm) => {
let location = (
Junction::Parent,
Junction::Parachain { id: sender.into() },
);
match T::XcmExecutor::execute_xcm(
location.into(),
xcm,
max_weight,
) {
Outcome::Error(e) => (Err(e.clone()), RawEvent::Fail(Some(hash), e)),
Outcome::Complete(w) => (Ok(w), RawEvent::Success(Some(hash))),
// As far as the caller is concerned, this was dispatched without error, so
// we just report the weight used.
Outcome::Incomplete(w, e) => (Ok(w), RawEvent::Fail(Some(hash), e)),
}
}
Err(()) => (Err(XcmError::UnhandledXcmVersion), RawEvent::BadVersion(Some(hash))),
};
Self::deposit_event(event);
result
}
fn process_xcmp_message(
sender: ParaId,
(sent_at, format): (RelayBlockNumber, XcmpMessageFormat),
max_weight: Weight,
) -> (Weight, bool) {
let data = InboundXcmpMessages::get(sender, sent_at);
let mut last_remaining_fragments;
let mut remaining_fragments = &data[..];
let mut weight_used = 0;
match format {
XcmpMessageFormat::ConcatenatedVersionedXcm => {
while !remaining_fragments.is_empty() {
last_remaining_fragments = remaining_fragments;
if let Ok(xcm) = VersionedXcm::<T::Call>::decode(&mut remaining_fragments) {
let weight = max_weight - weight_used;
match Self::handle_xcm_message(sender, sent_at, xcm, weight) {
Ok(used) => weight_used = weight_used.saturating_add(used),
Err(XcmError::TooMuchWeightRequired) => {
// That message didn't get processed this time because of being
// too heavy. We leave it around for next time and bail.
remaining_fragments = last_remaining_fragments;
break;
}
Err(_) => {
// Message looks invalid; don't attempt to retry
}
}
} else {
debug_assert!(false, "Invalid incoming XCMP message data");
remaining_fragments = &b""[..];
}
}
}
XcmpMessageFormat::ConcatenatedEncodedBlob => {
while !remaining_fragments.is_empty() {
last_remaining_fragments = remaining_fragments;
if let Ok(blob) = <Vec<u8>>::decode(&mut remaining_fragments) {
let weight = max_weight - weight_used;
match Self::handle_blob_message(sender, sent_at, blob, weight) {
Ok(used) => weight_used = weight_used.saturating_add(used),
Err(true) => {
// That message didn't get processed this time because of being
// too heavy. We leave it around for next time and bail.
remaining_fragments = last_remaining_fragments;
break;
}
Err(false) => {
// Message invalid; don't attempt to retry
}
}
} else {
debug_assert!(false, "Invalid incoming blob message data");
remaining_fragments = &b""[..];
}
}
}
XcmpMessageFormat::Signals => {
debug_assert!(false, "All signals are handled immediately; qed");
remaining_fragments = &b""[..];
}
}
let is_empty = remaining_fragments.is_empty();
if is_empty {
InboundXcmpMessages::remove(sender, sent_at);
} else {
InboundXcmpMessages::insert(sender, sent_at, remaining_fragments);
}
(weight_used, is_empty)
}
/// Service the incoming XCMP message queue attempting to execute up to `max_weight` execution
/// weight of messages.
fn service_xcmp_queue(max_weight: Weight) -> Weight {
let mut status = InboundXcmpStatus::get(); // <- sorted.
if status.len() == 0 {
return 0
}
let QueueConfigData {
resume_threshold,
threshold_weight,
weight_restrict_decay,
..
} = QueueConfig::get();
let mut shuffled = Self::create_shuffle(status.len());
let mut weight_used = 0;
let mut weight_available = 0;
// We don't want the possibility of a chain sending a series of really heavy messages and
// tying up the block's execution time from other chains. Therefore we execute any remaining
// messages in a random order.
// Order within a single channel will always be preserved, however this does mean that
// relative order between channels may not. The result is that chains which tend to send
// fewer, lighter messages will generally have a lower latency than chains which tend to
// send more, heavier messages.
let mut shuffle_index = 0;
while shuffle_index < shuffled.len() && max_weight.saturating_sub(weight_used) < threshold_weight {
let index = shuffled[shuffle_index];
let sender = status[index].0;
if weight_available != max_weight {
// Get incrementally closer to freeing up max_weight for message execution over the
// first round. For the second round we unlock all weight. If we come close enough
// on the first round to unlocking everything, then we do so.
if shuffle_index < status.len() {
weight_available += (max_weight - weight_available) / weight_restrict_decay;
if weight_available + threshold_weight > max_weight {
weight_available = max_weight;
}
} else {
weight_available = max_weight;
}
}
let weight_processed = if status[index].2.is_empty() {
debug_assert!(false, "channel exists in status; there must be messages; qed");
0
} else {
// Process up to one block's worth for now.
let weight_remaining = weight_available.saturating_sub(weight_used);
let (weight_processed, is_empty) = Self::process_xcmp_message(
sender,
status[index].2[0],
weight_remaining,
);
if is_empty {
status[index].2.remove(0);
}
weight_processed
};
weight_used += weight_processed;
if status[index].2.len() as u32 <= resume_threshold && status[index].1 == InboundStatus::Suspended {
// Resume
let r = Self::send_signal(sender, ChannelSignal::Resume);
debug_assert!(r.is_ok(), "WARNING: Failed sending resume into suspended channel");
status[index].1 = InboundStatus::Ok;
}
// If there are more and we're making progress, we process them after we've given the
// other channels a look in. If we've still not unlocked all weight, then we set them
// up for processing a second time anyway.
if !status[index].2.is_empty() && weight_processed > 0 || weight_available != max_weight {
if shuffle_index + 1 == shuffled.len() {
// Only this queue left. Just run around this loop once more.
continue
}
shuffled.push(index);
}
shuffle_index += 1;
}
// Only retain the senders that have non-empty queues.
status.retain(|item| !item.2.is_empty());
InboundXcmpStatus::put(status);
weight_used
}
fn suspend_channel(target: ParaId) {
OutboundXcmpStatus::mutate(|s| {
if let Some(index) = s.iter().position(|item| item.0 == target) {
let ok = s[index].1 == OutboundStatus::Ok;
debug_assert!(ok, "WARNING: Attempt to suspend channel that was not Ok.");
s[index].1 = OutboundStatus::Suspended;
} else {
s.push((target, OutboundStatus::Suspended, false, 0, 0));
}
});
}
fn resume_channel(target: ParaId) {
OutboundXcmpStatus::mutate(|s| {
if let Some(index) = s.iter().position(|item| item.0 == target) {
let suspended = s[index].1 == OutboundStatus::Suspended;
debug_assert!(suspended, "WARNING: Attempt to resume channel that was not suspended.");
if s[index].3 == s[index].4 {
s.remove(index);
} else {
s[index].1 = OutboundStatus::Ok;
}
} else {
debug_assert!(false, "WARNING: Attempt to resume channel that was not suspended.");
}
});
}
}
impl<T: Config> XcmpMessageHandler for Module<T> {
fn handle_xcmp_messages<'a, I: Iterator<Item=(ParaId, RelayBlockNumber, &'a [u8])>>(
iter: I,
max_weight: Weight,
) -> Weight {
let mut status = InboundXcmpStatus::get();
let QueueConfigData { suspend_threshold, drop_threshold, .. } = QueueConfig::get();
for (sender, sent_at, data) in iter {
// Figure out the message format.
let mut data_ref = data;
let format = match XcmpMessageFormat::decode(&mut data_ref) {
Ok(f) => f,
Err(_) => {
debug_assert!(false, "Unknown XCMP message format. Silently dropping message");
continue
},
};
if format == XcmpMessageFormat::Signals {
while !data_ref.is_empty() {
use ChannelSignal::*;
match ChannelSignal::decode(&mut data_ref) {
Ok(Suspend) => Self::suspend_channel(sender),
Ok(Resume) => Self::resume_channel(sender),
Err(_) => break,
}
}
} else {
// Record the fact we received it.
match status.binary_search_by_key(&sender, |item| item.0) {
Ok(i) => {
let count = status[i].2.len();
if count as u32 >= suspend_threshold && status[i].1 == InboundStatus::Ok {
status[i].1 = InboundStatus::Suspended;
let r = Self::send_signal(sender, ChannelSignal::Suspend);
if r.is_err() {
log::warn!("Attempt to suspend channel failed. Messages may be dropped.");
}
}
if (count as u32) < drop_threshold {
status[i].2.push((sent_at, format));
} else {
debug_assert!(false, "XCMP channel queue full. Silently dropping message");
}
},
Err(_) => status.push((sender, InboundStatus::Ok, vec![(sent_at, format)])),
}
// Queue the payload for later execution.
InboundXcmpMessages::insert(sender, sent_at, data_ref);
}
// Optimization note; it would make sense to execute messages immediately if
// `status.is_empty()` here.
}
status.sort();
InboundXcmpStatus::put(status);
Self::service_xcmp_queue(max_weight)
}
}
impl<T: Config> XcmpMessageSource for Module<T> {
fn take_outbound_messages(maximum_channels: usize) -> Vec<(ParaId, Vec<u8>)> {
let mut statuses = OutboundXcmpStatus::get();
let old_statuses_len = statuses.len();
let max_message_count = statuses.len().min(maximum_channels);
let mut result = Vec::with_capacity(max_message_count);
for status in statuses.iter_mut() {
let (para_id, outbound_status, mut signalling, mut begin, mut end) = *status;
if result.len() == max_message_count {
// We check this condition in the beginning of the loop so that we don't include
// a message where the limit is 0.
break;
}
if outbound_status == OutboundStatus::Suspended {
continue
}
let (max_size_now, max_size_ever) = match T::ChannelInfo::get_channel_status(para_id) {
ChannelStatus::Closed => {
// This means that there is no such channel anymore. Nothing to be done but
// swallow the messages and discard the status.
for i in begin..end {
OutboundXcmpMessages::remove(para_id, i);
}
if signalling {
SignalMessages::remove(para_id);
}
*status = (para_id, OutboundStatus::Ok, false, 0, 0);
continue
}
ChannelStatus::Full => continue,
ChannelStatus::Ready(n, e) => (n, e),
};
let page = if signalling {
let page = SignalMessages::get(para_id);
if page.len() < max_size_now {
SignalMessages::remove(para_id);
signalling = false;
page
} else {
continue
}
} else if end > begin {
let page = OutboundXcmpMessages::get(para_id, begin);
if page.len() < max_size_now {
OutboundXcmpMessages::remove(para_id, begin);
begin += 1;
page
} else {
continue
}
} else {
continue;
};
if begin == end {
begin = 0;
end = 0;
}
if page.len() > max_size_ever {
// TODO: #274 This means that the channel's max message size has changed since
// the message was sent. We should parse it and split into smaller mesasges but
// since it's so unlikely then for now we just drop it.
log::warn!("WARNING: oversize message in queue. silently dropping.");
} else {
result.push((para_id, page));
}
*status = (para_id, outbound_status, signalling, begin, end);
}
// Sort the outbound messages by ascending recipient para id to satisfy the acceptance
// criteria requirement.
result.sort_by_key(|m| m.0);
// Prune hrmp channels that became empty. Additionally, because it may so happen that we
// only gave attention to some channels in `non_empty_hrmp_channels` it's important to
// change the order. Otherwise, the next `on_finalize` we will again give attention
// only to those channels that happen to be in the beginning, until they are emptied.
// This leads to "starvation" of the channels near to the end.
//
// To mitigate this we shift all processed elements towards the end of the vector using
// `rotate_left`. To get intuition how it works see the examples in its rustdoc.
statuses.retain(|x| x.1 == OutboundStatus::Suspended || x.2 || x.3 < x.4);
// old_status_len must be >= status.len() since we never add anything to status.
let pruned = old_statuses_len - statuses.len();
// removing an item from status implies a message being sent, so the result messages must
// be no less than the pruned channels.
statuses.rotate_left(result.len() - pruned);
OutboundXcmpStatus::put(statuses);
result
}
}
/// Xcm sender for sending to a sibling parachain.
impl<T: Config> SendXcm for Module<T> {
fn send_xcm(dest: MultiLocation, msg: Xcm<()>) -> Result<(), XcmError> {
match &dest {
// An HRMP message for a sibling parachain.
MultiLocation::X2(Junction::Parent, Junction::Parachain { id }) => {
let msg = VersionedXcm::<()>::from(msg);
let hash = T::Hashing::hash_of(&msg);
Self::send_fragment((*id).into(), XcmpMessageFormat::ConcatenatedVersionedXcm, msg)
.map_err(|e| XcmError::SendFailed(<&'static str>::from(e)))?;
Self::deposit_event(RawEvent::XcmpMessageSent(Some(hash)));
Ok(())
}
// Anything else is unhandled. This includes a message this is meant for us.
_ => Err(XcmError::CannotReachDestination(dest, msg)),
}
}
}