Newer
Older
// Copyright 2017, 2018 Parity Technologies
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::alloc::vec::Vec;
use crate::alloc::boxed::Box;
#[cfg(any(feature = "std", feature = "full"))]
use crate::alloc::{
use core::{mem, slice, ops::Deref};
use core::marker::PhantomData;
#[cfg(feature = "std")]
use std::fmt;
#[cfg_attr(feature = "std", derive(Debug))]
#[derive(PartialEq)]
#[cfg(feature = "std")]
/// Descriptive error type
pub struct Error(&'static str);
#[cfg(not(feature = "std"))]
#[derive(PartialEq)]
pub struct Error;
impl Error {
#[cfg(feature = "std")]
/// Error description
///
/// This function returns an actual error str when running in `std`
/// environment, but `""` on `no_std`.
pub fn what(&self) -> &'static str {
self.0
}
#[cfg(not(feature = "std"))]
/// Error description
///
/// This function returns an actual error str when running in `std`
/// environment, but `""` on `no_std`.
pub fn what(&self) -> &'static str {
""
}
}
#[cfg(feature = "std")]
impl std::fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.0)
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {
fn description(&self) -> &str {
self.0
}
}
impl From<&'static str> for Error {
#[cfg(feature = "std")]
fn from(s: &'static str) -> Error {
return Error(s)
}
#[cfg(not(feature = "std"))]
fn from(_s: &'static str) -> Error {
return Error
}
}
/// Trait that allows reading of data into a slice.
pub trait Input {
/// Read into the provided input slice. Returns the number of bytes read.
///
/// Note that this function should be more like `std::io::Read::read_exact`
/// than `std::io::Read::read`. I.e. the buffer should always be filled
/// with as many bytes as available and if `n < into.len()` is returned
/// then it should mean that there was not enough bytes available and the
/// `Input` is drained.
///
/// Callers of this function should not need to call again if `n < into.len()`
/// is returned.
fn read(&mut self, into: &mut [u8]) -> Result<usize, Error>;
fn read_byte(&mut self) -> Result<u8, Error> {
self.read(&mut buf[..])?;
Ok(buf[0])
}
}
#[cfg(not(feature = "std"))]
impl<'a> Input for &'a [u8] {
fn read(&mut self, into: &mut [u8]) -> Result<usize, Error> {
if into.len() > self.len() {
return Err("".into());
}
let len = ::core::cmp::min(into.len(), self.len());
into[..len].copy_from_slice(&self[..len]);
*self = &self[len..];
Ok(len)
}
}
#[cfg(feature = "std")]
impl From<std::io::Error> for Error {
fn from(_err: std::io::Error) -> Self {
"io error".into()
impl<R: std::io::Read> Input for R {
fn read(&mut self, into: &mut [u8]) -> Result<usize, Error> {
(self as &mut dyn std::io::Read).read_exact(into)?;
Ok(into.len())
struct PrefixInput<'a, T> {
prefix: Option<u8>,
input: &'a mut T,
}
impl<'a, T: 'a + Input> Input for PrefixInput<'a, T> {
fn read(&mut self, buffer: &mut [u8]) -> Result<usize, Error> {
match self.prefix.take() {
Some(v) if buffer.len() > 0 => {
buffer[0] = v;
let res = 1 + self.input.read(&mut buffer[1..])?;
Ok(res)
}
_ => self.input.read(buffer)
}
}
}
/// Trait that allows writing of data.
pub trait Output: Sized {
/// Write to the output.
fn write(&mut self, bytes: &[u8]);
/// Write a single byte to the output.
fn push_byte(&mut self, byte: u8) {
self.write(&[byte]);
}
/// Write encoding of given value to the output.
fn push<V: Encode + ?Sized>(&mut self, value: &V) {
value.encode_to(self);
}
}
#[cfg(not(feature = "std"))]
impl Output for Vec<u8> {
fn write(&mut self, bytes: &[u8]) {
self.extend_from_slice(bytes)
impl<W: std::io::Write> Output for W {
(self as &mut dyn std::io::Write).write_all(bytes).expect("Codec outputs are infallible");
struct ArrayVecWrapper<T: arrayvec::Array>(ArrayVec<T>);
impl<T: arrayvec::Array<Item=u8>> Output for ArrayVecWrapper<T> {
fn write(&mut self, bytes: &[u8]) {
let old_len = self.0.len();
let new_len = old_len + bytes.len();
assert!(new_len <= self.0.capacity());
unsafe {
self.0.set_len(new_len);
self.0[old_len..new_len].copy_from_slice(bytes);
}
fn push_byte(&mut self, byte: u8) {
self.0.push(byte);
}
}
/// Trait that allows zero-copy write of value-references to slices in LE format.
///
/// Implementations should override `using_encoded` for value types and `encode_to` and `size_hint` for allocating types.
/// Wrapper types should override all methods.
/// If possible give a hint of expected size of the encoding.
///
/// This method is used inside default implementation of `encode`
/// to avoid re-allocations.
fn size_hint(&self) -> usize {
0
}
/// Convert self to a slice and append it to the destination.
fn encode_to<T: Output>(&self, dest: &mut T) {
self.using_encoded(|buf| dest.write(buf));
}
/// Convert self to an owned vector.
fn encode(&self) -> Vec<u8> {
let mut r = Vec::with_capacity(self.size_hint());
self.encode_to(&mut r);
r
}
/// Convert self to a slice and then invoke the given closure with it.
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&self.encode())
}
}
/// Trait that allows zero-copy read of value-references from slices in LE format.
pub trait Decode: Sized {
/// Attempt to deserialise the value from input.
fn decode<I: Input>(value: &mut I) -> Result<Self, Error>;
}
/// Trait that allows zero-copy read/write of value-references to/from slices in LE format.
pub trait Codec: Decode + Encode {}
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
impl<S: Decode + Encode> Codec for S {}
/// A marker trait for types that wrap other encodable type.
///
/// Such types should not carry any additional information
/// that would require to be encoded, because the encoding
/// is assumed to be the same as the wrapped type.
pub trait WrapperTypeEncode: Deref {}
impl<T> WrapperTypeEncode for Vec<T> {}
impl<T: ?Sized> WrapperTypeEncode for Box<T> {}
impl<'a, T: ?Sized> WrapperTypeEncode for &'a T {}
impl<'a, T: ?Sized> WrapperTypeEncode for &'a mut T {}
#[cfg(any(feature = "std", feature = "full"))]
impl<'a, T: ToOwned + ?Sized> WrapperTypeEncode for Cow<'a, T> {}
#[cfg(any(feature = "std", feature = "full"))]
impl<T: ?Sized> WrapperTypeEncode for std::sync::Arc<T> {}
#[cfg(any(feature = "std", feature = "full"))]
impl<T: ?Sized> WrapperTypeEncode for std::rc::Rc<T> {}
#[cfg(any(feature = "std", feature = "full"))]
impl WrapperTypeEncode for String {}
impl<T, X> Encode for X where
T: Encode + ?Sized,
X: WrapperTypeEncode<Target=T>,
{
fn size_hint(&self) -> usize {
(&**self).size_hint()
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
(&**self).using_encoded(f)
}
fn encode(&self) -> Vec<u8> {
(&**self).encode()
}
fn encode_to<W: Output>(&self, dest: &mut W) {
(&**self).encode_to(dest)
}
}
/// A marker trait for types that can be created solely from other decodable types.
///
/// The decoding of such type is assumed to be the same as the wrapped type.
pub trait WrapperTypeDecode: Sized {
/// A wrapped type.
type Wrapped: Into<Self>;
}
impl<T> WrapperTypeDecode for Box<T> {
type Wrapped = T;
}
#[cfg(any(feature = "std", feature = "full"))]
impl<T> WrapperTypeDecode for std::sync::Arc<T> {
type Wrapped = T;
}
#[cfg(any(feature = "std", feature = "full"))]
impl<T> WrapperTypeDecode for std::rc::Rc<T> {
type Wrapped = T;
}
impl<T, X> Decode for X where
T: Decode + Into<X>,
X: WrapperTypeDecode<Wrapped=T>,
{
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
Ok(T::decode(input)?.into())
}
}
/// Compact-encoded variant of T. This is more space-efficient but less compute-efficient.
#[derive(Eq, PartialEq, Clone, Copy, Ord, PartialOrd)]
impl<T> From<T> for Compact<T> {
fn from(x: T) -> Compact<T> { Compact(x) }
}
impl<'a, T: Copy> From<&'a T> for Compact<T> {
fn from(x: &'a T) -> Compact<T> { Compact(*x) }
}
/// Allow foreign structs to be wrap in Compact
/// A compact-encodable type that should be used as the encoding.
/// Returns the encodable type.
fn encode_as(&self) -> &Self::As;
/// Create `Self` from the decodable type.
fn decode_from(_: Self::As) -> Self;
}
impl<T> Encode for Compact<T>
where
for<'a> CompactRef<'a, T>: Encode,
fn size_hint(&self) -> usize {
CompactRef(&self.0).size_hint()
}
fn encode_to<W: Output>(&self, dest: &mut W) {
CompactRef(&self.0).encode_to(dest)
}
fn encode(&self) -> Vec<u8> {
CompactRef(&self.0).encode()
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
CompactRef(&self.0).using_encoded(f)
}
}
impl<'a, T> Encode for CompactRef<'a, T>
where
T: CompactAs,
for<'b> CompactRef<'b, T::As>: Encode,
fn size_hint(&self) -> usize {
CompactRef(self.0.encode_as()).size_hint()
}
fn encode_to<Out: Output>(&self, dest: &mut Out) {
CompactRef(self.0.encode_as()).encode_to(dest)
}
fn encode(&self) -> Vec<u8> {
CompactRef(self.0.encode_as()).encode()
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
CompactRef(self.0.encode_as()).using_encoded(f)
}
}
impl<T> Decode for Compact<T>
where
T: CompactAs,
Compact<T::As>: Decode,
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
Compact::<T::As>::decode(input)
.map(|x| Compact(<T as CompactAs>::decode_from(x.0)))
}
}
macro_rules! impl_from_compact {
( $( $ty:ty ),* ) => {
$(
impl From<Compact<$ty>> for $ty {
fn from(x: Compact<$ty>) -> $ty { x.0 }
}
)*
}
impl_from_compact! { (), u8, u16, u32, u64, u128 }
/// Compact-encoded variant of &'a T. This is more space-efficient but less compute-efficient.
#[derive(Eq, PartialEq, Clone, Copy)]
pub struct CompactRef<'a, T>(pub &'a T);
impl<'a, T> From<&'a T> for CompactRef<'a, T> {
fn from(x: &'a T) -> Self { CompactRef(x) }
}
impl<T> ::core::fmt::Debug for Compact<T> where T: ::core::fmt::Debug {
fn fmt(&self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result {
impl<T> serde::Serialize for Compact<T> where T: serde::Serialize {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: serde::Serializer {
T::serialize(&self.0, serializer)
}
}
#[cfg(feature = "std")]
impl<'de, T> serde::Deserialize<'de> for Compact<T> where T: serde::Deserialize<'de> {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: serde::Deserializer<'de> {
pub trait MaybeDebugSerde: core::fmt::Debug + serde::Serialize + for<'a> serde::Deserialize<'a> {}
impl<T> MaybeDebugSerde for T where T: core::fmt::Debug + serde::Serialize + for<'a> serde::Deserialize<'a> {}
#[cfg(not(feature = "std"))]
pub trait MaybeDebugSerde {}
#[cfg(not(feature = "std"))]
impl<T> MaybeDebugSerde for T {}
/// Trait that tells you if a given type can be encoded/decoded in a compact way.
/// The compact type; this can be
type Type: for<'a> EncodeAsRef<'a, Self> + Decode + From<Self> + Into<Self> + Clone +
PartialEq + Eq + MaybeDebugSerde;
/// Something that can be encoded as a reference.
pub trait EncodeAsRef<'a, T: 'a> {
/// The reference type that is used for encoding.
type RefType: Encode + From<&'a T>;
}
impl<'a, T: 'a> EncodeAsRef<'a, T> for Compact<T> where CompactRef<'a, T>: Encode + From<&'a T> {
type RefType = CompactRef<'a, T>;
}
impl<T: 'static> HasCompact for T where
Compact<T>: for<'a> EncodeAsRef<'a, T> + Decode + From<Self> + Into<Self> + Clone +
PartialEq + Eq + MaybeDebugSerde,
type Type = Compact<T>;
}
// compact encoding:
// 0b00 00 00 00 / 00 00 00 00 / 00 00 00 00 / 00 00 00 00
// xx xx xx 00 (0 .. 2**6) (u8)
// yL yL yL 01 / yH yH yH yL (2**6 .. 2**14) (u8, u16) low LH high
// zL zL zL 10 / zM zM zM zL / zM zM zM zM / zH zH zH zM (2**14 .. 2**30) (u16, u32) low LMMH high
// nn nn nn 11 [ / zz zz zz zz ]{4 + n} (2**30 .. 2**536) (u32, u64, u128, U256, U512, U520) straight LE-encoded
// Note: we use *LOW BITS* of the LSB in LE encoding to encode the 2 bit key.
impl<'a> Encode for CompactRef<'a, ()> {
fn encode_to<W: Output>(&self, _dest: &mut W) {
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&[])
}
fn encode(&self) -> Vec<u8> {
Vec::new()
}
impl<'a> Encode for CompactRef<'a, u8> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match self.0 {
0..=0b00111111 => dest.push_byte(self.0 << 2),
_ => (((*self.0 as u16) << 2) | 0b01).encode_to(dest),
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
let mut r = ArrayVecWrapper(ArrayVec::<[u8; 2]>::new());
self.encode_to(&mut r);
f(&r.0)
}
impl<'a> Encode for CompactRef<'a, u16> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match self.0 {
0..=0b00111111 => dest.push_byte((*self.0 as u8) << 2),
0..=0b00111111_11111111 => ((*self.0 << 2) | 0b01).encode_to(dest),
_ => (((*self.0 as u32) << 2) | 0b10).encode_to(dest),
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
let mut r = ArrayVecWrapper(ArrayVec::<[u8; 4]>::new());
self.encode_to(&mut r);
f(&r.0)
}
impl<'a> Encode for CompactRef<'a, u32> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match self.0 {
0..=0b00111111 => dest.push_byte((*self.0 as u8) << 2),
0..=0b00111111_11111111 => (((*self.0 as u16) << 2) | 0b01).encode_to(dest),
0..=0b00111111_11111111_11111111_11111111 => ((*self.0 << 2) | 0b10).encode_to(dest),
_ => {
dest.push_byte(0b11);
self.0.encode_to(dest);
}
}
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
let mut r = ArrayVecWrapper(ArrayVec::<[u8; 5]>::new());
self.encode_to(&mut r);
f(&r.0)
}
impl<'a> Encode for CompactRef<'a, u64> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match self.0 {
0..=0b00111111 => dest.push_byte((*self.0 as u8) << 2),
0..=0b00111111_11111111 => (((*self.0 as u16) << 2) | 0b01).encode_to(dest),
0..=0b00111111_11111111_11111111_11111111 => (((*self.0 as u32) << 2) | 0b10).encode_to(dest),
let bytes_needed = 8 - self.0.leading_zeros() / 8;
assert!(bytes_needed >= 4, "Previous match arm matches anyting less than 2^30; qed");
dest.push_byte(0b11 + ((bytes_needed - 4) << 2) as u8);
let mut v = *self.0;
for _ in 0..bytes_needed {
dest.push_byte(v as u8);
v >>= 8;
}
assert_eq!(v, 0, "shifted sufficient bits right to lead only leading zeros; qed")
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
let mut r = ArrayVecWrapper(ArrayVec::<[u8; 9]>::new());
self.encode_to(&mut r);
f(&r.0)
}
impl<'a> Encode for CompactRef<'a, u128> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match self.0 {
0..=0b00111111 => dest.push_byte((*self.0 as u8) << 2),
0..=0b00111111_11111111 => (((*self.0 as u16) << 2) | 0b01).encode_to(dest),
0..=0b00111111_11111111_11111111_11111111 => (((*self.0 as u32) << 2) | 0b10).encode_to(dest),
let bytes_needed = 16 - self.0.leading_zeros() / 8;
assert!(bytes_needed >= 4, "Previous match arm matches anyting less than 2^30; qed");
dest.push_byte(0b11 + ((bytes_needed - 4) << 2) as u8);
let mut v = *self.0;
for _ in 0..bytes_needed {
dest.push_byte(v as u8);
v >>= 8;
}
assert_eq!(v, 0, "shifted sufficient bits right to lead only leading zeros; qed")
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
let mut r = ArrayVecWrapper(ArrayVec::<[u8; 17]>::new());
self.encode_to(&mut r);
f(&r.0)
}
fn decode<I: Input>(_input: &mut I) -> Result<Self, Error> {
Ok(Compact(()))
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
Ok(Compact(match prefix % 4 {
0 => prefix as u8 >> 2,
1 => {
let x = u16::decode(&mut PrefixInput{prefix: Some(prefix), input})? >> 2;
if x < 256 {
x as u8
} else {
return Err("out of range decoding Compact<u8>".into());
_ => return Err("unexpected prefix decoding Compact<u8>".into()),
}))
}
}
impl Decode for Compact<u16> {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
Ok(Compact(match prefix % 4 {
0 => prefix as u16 >> 2,
1 => u16::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u16 >> 2,
2 => {
let x = u32::decode(&mut PrefixInput{prefix: Some(prefix), input})? >> 2;
if x < 65536 {
x as u16
} else {
return Err("out of range decoding Compact<u16>".into());
_ => return Err("unexpected prefix decoding Compact<u16>".into()),
}))
}
}
impl Decode for Compact<u32> {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
Ok(Compact(match prefix % 4 {
0 => prefix as u32 >> 2,
1 => u16::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u32 >> 2,
2 => u32::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u32 >> 2,
3|_ => { // |_. yeah, i know.
if prefix >> 2 == 0 {
// just 4 bytes. ok.
u32::decode(input)?
} else {
// Out of range for a 32-bit quantity.
return Err("out of range decoding Compact<u32>".into());
impl Decode for Compact<u64> {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
let prefix = input.read_byte()?;
Ok(Compact(match prefix % 4 {
0 => prefix as u64 >> 2,
1 => u16::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u64 >> 2,
2 => u32::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u64 >> 2,
3|_ => match (prefix >> 2) + 4 {
4 => u32::decode(input)? as u64,
8 => u64::decode(input)?,
x if x > 8 => return Err("unexpected prefix decoding Compact<u64>".into()),
bytes_needed => {
let mut res = 0;
for i in 0..bytes_needed {
res |= (input.read_byte()? as u64) << (i * 8);
}
res
}))
}
}
impl Decode for Compact<u128> {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
let prefix = input.read_byte()?;
Ok(Compact(match prefix % 4 {
0 => prefix as u128 >> 2,
1 => u16::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u128 >> 2,
2 => u32::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u128 >> 2,
3|_ => match (prefix >> 2) + 4 {
4 => u32::decode(input)? as u128,
8 => u64::decode(input)? as u128,
16 => u128::decode(input)?,
x if x > 16 => return Err("unexpected prefix decoding Compact<u128>".into()),
bytes_needed => {
let mut res = 0;
for i in 0..bytes_needed {
res |= (input.read_byte()? as u128) << (i * 8);
}
res
}
}
}))
}
}
impl<T: Encode, E: Encode> Encode for Result<T, E> {
fn size_hint(&self) -> usize {
1 + match *self {
Ok(ref t) => t.size_hint(),
Err(ref t) => t.size_hint(),
}
}
fn encode_to<W: Output>(&self, dest: &mut W) {
match *self {
Ok(ref t) => {
dest.push_byte(0);
t.encode_to(dest);
}
Err(ref e) => {
dest.push_byte(1);
e.encode_to(dest);
}
}
}
}
impl<T: Decode, E: Decode> Decode for Result<T, E> {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
0 => Ok(Ok(T::decode(input)?)),
1 => Ok(Err(E::decode(input)?)),
_ => Err("unexpected first byte decoding Result".into()),
}
}
}
/// Shim type because we can't do a specialised implementation for `Option<bool>` directly.
impl core::fmt::Debug for OptionBool {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
impl Encode for OptionBool {
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&[match *self {
OptionBool(None) => 0u8,
OptionBool(Some(true)) => 1u8,
OptionBool(Some(false)) => 2u8,
}])
}
}
impl Decode for OptionBool {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
0 => Ok(OptionBool(None)),
1 => Ok(OptionBool(Some(true))),
2 => Ok(OptionBool(Some(false))),
_ => Err("unexpected first byte decoding OptionBool".into()),
}
}
}
impl<T: Encode> Encode for Option<T> {
fn size_hint(&self) -> usize {
1 + match *self {
Some(ref t) => t.size_hint(),
None => 0,
}
}
fn encode_to<W: Output>(&self, dest: &mut W) {
match *self {
Some(ref t) => {
dest.push_byte(1);
t.encode_to(dest);
}
None => dest.push_byte(0),
}
}
}
impl<T: Decode> Decode for Option<T> {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
0 => Ok(None),
1 => Ok(Some(T::decode(input)?)),
_ => Err("unexpecded first byte decoding Option".into()),
( $( $n:expr, )* ) => { $(
impl<T: Encode> Encode for [T; $n] {
fn encode_to<W: Output>(&self, dest: &mut W) {
for item in self.iter() {
item.encode_to(dest);
}
}
}
impl<T: Decode> Decode for [T; $n] {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
let mut r = ArrayVec::new();
for _ in 0..$n {
r.push(T::decode(input)?);
}
let i = r.into_inner();
match i {
Ok(a) => Ok(a),
Err(_) => Err("failed to get inner array from ArrayVec".into()),
}
impl_array!(
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124,
125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140,
141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156,
157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172,
173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188,
189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204,
205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220,
221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236,
237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252,
253, 254, 255, 256, 384, 512, 768, 1024, 2048, 4096, 8192, 16384, 32768,
);
impl Encode for [u8] {
fn size_hint(&self) -> usize {
self.len() + mem::size_of::<u32>()
}
fn encode_to<W: Output>(&self, dest: &mut W) {
let len = self.len();
assert!(len <= u32::max_value() as usize, "Attempted to serialize a collection with too many elements.");
dest.write(self)
}
}
impl Decode for Vec<u8> {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
<Compact<u32>>::decode(input).and_then(move |Compact(len)| {
let len = len as usize;
let mut vec = vec![0; len];
input.read(&mut vec[..len])?;
Ok(vec)
impl Encode for str {
fn size_hint(&self) -> usize {
self.as_bytes().size_hint()
}
fn encode_to<W: Output>(&self, dest: &mut W) {
self.as_bytes().encode_to(dest)
}
fn encode(&self) -> Vec<u8> {
self.as_bytes().encode()
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
self.as_bytes().using_encoded(f)
#[cfg(any(feature = "std", feature = "full"))]
impl<'a, T: ToOwned + ?Sized> Decode for Cow<'a, T>
where
<T as ToOwned>::Owned: Decode,
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
Ok(Cow::Owned(Decode::decode(input)?))
impl<T> Encode for PhantomData<T> {
fn encode_to<W: Output>(&self, _dest: &mut W) {}
impl<T> Decode for PhantomData<T> {
fn decode<I: Input>(_input: &mut I) -> Result<Self, Error> {
Ok(PhantomData)
#[cfg(any(feature = "std", feature = "full"))]
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
Ok(Self::from_utf8_lossy(&Vec::decode(input)?).into())
}
}
impl<T: Encode> Encode for [T] {
fn encode_to<W: Output>(&self, dest: &mut W) {
let len = self.len();
assert!(len <= u32::max_value() as usize, "Attempted to serialize a collection with too many elements.");
for item in self {
item.encode_to(dest);
}
}
}
impl<T: Decode> Decode for Vec<T> {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
<Compact<u32>>::decode(input).and_then(move |Compact(len)| {
let mut r = Vec::with_capacity(len as usize);
for _ in 0..len {
r.push(T::decode(input)?);
}
impl<K: Encode + Ord, V: Encode> Encode for BTreeMap<K, V> {
fn encode_to<W: Output>(&self, dest: &mut W) {
let len = self.len();
assert!(len <= u32::max_value() as usize, "Attempted to serialize a collection with too many elements.");
(len as u32).encode_to(dest);
for i in self.iter() {
i.encode_to(dest);
}
}
}
impl<K: Decode + Ord, V: Decode> Decode for BTreeMap<K, V> {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
u32::decode(input).and_then(move |len| {
let mut r: BTreeMap<K, V> = BTreeMap::new();
for _ in 0..len {
let (key, v) = <(K, V)>::decode(input)?;
r.insert(key, v);
}
fn encode_to<W: Output>(&self, _dest: &mut W) {
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&[])
}
fn encode(&self) -> Vec<u8> {
Vec::new()
}
}
impl Decode for () {
fn decode<I: Input>(_: &mut I) -> Result<(), Error> {
Ok(())
}
}
macro_rules! tuple_impl {
($one:ident,) => {
impl<$one: Encode> Encode for ($one,) {
fn size_hint(&self) -> usize {
self.0.size_hint()
}
fn encode_to<T: Output>(&self, dest: &mut T) {
self.0.encode_to(dest);
}
fn encode(&self) -> Vec<u8> {
self.0.encode()
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
self.0.using_encoded(f)
}