Newer
Older
// Copyright 2017, 2018 Parity Technologies
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
//! Serialisation.
use alloc::vec::Vec;
use alloc::boxed::Box;
use core::{mem, slice};
use arrayvec::ArrayVec;
/// Trait that allows reading of data into a slice.
pub trait Input {
/// Read into the provided input slice. Returns the number of bytes read.
fn read(&mut self, into: &mut [u8]) -> usize;
/// Read a single byte from the input.
fn read_byte(&mut self) -> Option<u8> {
let mut buf = [0u8];
match self.read(&mut buf[..]) {
0 => None,
1 => Some(buf[0]),
_ => unreachable!(),
}
}
}
#[cfg(not(feature = "std"))]
impl<'a> Input for &'a [u8] {
fn read(&mut self, into: &mut [u8]) -> usize {
let len = ::core::cmp::min(into.len(), self.len());
into[..len].copy_from_slice(&self[..len]);
*self = &self[len..];
len
}
}
#[cfg(feature = "std")]
impl<R: ::std::io::Read> Input for R {
fn read(&mut self, into: &mut [u8]) -> usize {
match (self as &mut ::std::io::Read).read_exact(into) {
Ok(()) => into.len(),
Err(_) => 0,
}
}
}
/// Prefix another input with a byte.
struct PrefixInput<'a, T: 'a> {
prefix: Option<u8>,
input: &'a mut T,
}
impl<'a, T: 'a + Input> Input for PrefixInput<'a, T> {
fn read(&mut self, buffer: &mut [u8]) -> usize {
match self.prefix.take() {
Some(v) if buffer.len() > 0 => {
buffer[0] = v;
1 + self.input.read(&mut buffer[1..])
}
_ => self.input.read(buffer)
}
}
}
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/// Trait that allows writing of data.
pub trait Output: Sized {
/// Write to the output.
fn write(&mut self, bytes: &[u8]);
fn push_byte(&mut self, byte: u8) {
self.write(&[byte]);
}
fn push<V: Encode + ?Sized>(&mut self, value: &V) {
value.encode_to(self);
}
}
#[cfg(not(feature = "std"))]
impl Output for Vec<u8> {
fn write(&mut self, bytes: &[u8]) {
self.extend(bytes);
}
}
#[cfg(feature = "std")]
impl<W: ::std::io::Write> Output for W {
fn write(&mut self, bytes: &[u8]) {
(self as &mut ::std::io::Write).write_all(bytes).expect("Codec outputs are infallible");
}
}
/// Trait that allows zero-copy write of value-references to slices in LE format.
/// Implementations should override `using_encoded` for value types and `encode_to` for allocating types.
pub trait Encode {
/// Convert self to a slice and append it to the destination.
fn encode_to<T: Output>(&self, dest: &mut T) {
self.using_encoded(|buf| dest.write(buf));
}
/// Convert self to an owned vector.
fn encode(&self) -> Vec<u8> {
let mut r = Vec::new();
self.encode_to(&mut r);
r
}
/// Convert self to a slice and then invoke the given closure with it.
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&self.encode())
}
}
/// Trait that allows zero-copy read of value-references from slices in LE format.
pub trait Decode: Sized {
/// Attempt to deserialise the value from input.
fn decode<I: Input>(value: &mut I) -> Option<Self>;
}
/// Trait that allows zero-copy read/write of value-references to/from slices in LE format.
pub trait Codec: Decode + Encode {}
/// Compact-encoded variant of T. This is more space-efficient but less compute-efficient.
impl<T> From<T> for Compact<T> {
fn from(x: T) -> Compact<T> { Compact(x) }
}
impl<'a, T: Copy> From<&'a T> for Compact<T> {
fn from(x: &'a T) -> Compact<T> { Compact(*x) }
}
macro_rules! impl_from_compact {
( $( $ty:ty ),* ) => {
$(
impl From<Compact<$ty>> for $ty {
fn from(x: Compact<$ty>) -> $ty { x.0 }
}
)*
}
pub trait MaybeDebugSerde: ::std::fmt::Debug + ::serde::Serialize + for<'a> ::serde::Deserialize<'a> {}
impl<T> MaybeDebugSerde for T where T: ::std::fmt::Debug + ::serde::Serialize + for<'a> ::serde::Deserialize<'a> {}
impl<T> MaybeDebugSerde for T {}
#[cfg(feature = "std")]
impl<T> ::std::fmt::Debug for Compact<T> where T: ::std::fmt::Debug {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
self.0.fmt(f)
}
}
#[cfg(feature = "std")]
impl<T> ::serde::Serialize for Compact<T> where T: ::serde::Serialize {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: ::serde::Serializer {
T::serialize(&self.0, serializer)
}
}
#[cfg(feature = "std")]
impl<'de, T> ::serde::Deserialize<'de> for Compact<T> where T: ::serde::Deserialize<'de> {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: ::serde::Deserializer<'de> {
T::deserialize(deserializer).map(Compact)
}
}
impl_from_compact! { u8, u16, u32, u64, u128 }
/// Trait that tells you if a given type can be encoded/decoded in a compact way.
pub trait HasCompact: Sized {
/// The compact type; this can be
type Type: Encode + Decode + From<Self> + Into<Self> + Clone + PartialEq + Eq + MaybeDebugSerde;
impl<T> HasCompact for T where
Compact<T>: Encode + Decode + From<Self> + Into<Self> + Clone + PartialEq + Eq + MaybeDebugSerde
type Type = Compact<T>;
}
// compact encoding:
// 0b00 00 00 00 / 00 00 00 00 / 00 00 00 00 / 00 00 00 00
// xx xx xx 00 (0 ... 2**6 - 1) (u8)
// yL yL yL 01 / yH yH yH yL (2**6 ... 2**14 - 1) (u8, u16) low LH high
// zL zL zL 10 / zM zM zM zL / zM zM zM zM / zH zH zH zM (2**14 ... 2**30 - 1) (u16, u32) low LMMH high
// nn nn nn 11 [ / zz zz zz zz ]{4 + n} (2**30 ... 2**536 - 1) (u32, u64, u128, U256, U512, U520) straight LE-encoded
// Note: we use *LOW BITS* of the LSB in LE encoding to encode the 2 bit key.
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
impl Encode for Compact<u8> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match self.0 {
0...0b00111111 => dest.push_byte(self.0 << 2),
_ => (((self.0 as u16) << 2) | 0b01).encode_to(dest),
}
}
}
impl Encode for Compact<u16> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match self.0 {
0...0b00111111 => dest.push_byte((self.0 as u8) << 2),
0...0b00111111_11111111 => ((self.0 << 2) | 0b01).encode_to(dest),
_ => (((self.0 as u32) << 2) | 0b10).encode_to(dest),
}
}
}
impl Encode for Compact<u32> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match self.0 {
0...0b00111111 => dest.push_byte((self.0 as u8) << 2),
0...0b00111111_11111111 => (((self.0 as u16) << 2) | 0b01).encode_to(dest),
0...0b00111111_11111111_11111111_11111111 => ((self.0 << 2) | 0b10).encode_to(dest),
_ => {
dest.push_byte(0b11);
self.0.encode_to(dest);
}
}
}
}
impl Encode for Compact<u64> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match self.0 {
0...0b00111111 => dest.push_byte((self.0 as u8) << 2),
0...0b00111111_11111111 => (((self.0 as u16) << 2) | 0b01).encode_to(dest),
0...0b00111111_11111111_11111111_11111111 => (((self.0 as u32) << 2) | 0b10).encode_to(dest),
_ => {
let bytes_needed = 8 - self.0.leading_zeros() / 8;
assert!(bytes_needed >= 4, "Previous match arm matches anyting less than 2^30; qed");
dest.push_byte(0b11 + ((bytes_needed - 4) << 2) as u8);
let mut v = self.0;
for _ in 0..bytes_needed {
dest.push_byte(v as u8);
v >>= 8;
}
assert_eq!(v, 0, "shifted sufficient bits right to lead only leading zeros; qed")
}
}
}
}
impl Encode for Compact<u128> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match self.0 {
0...0b00111111 => dest.push_byte((self.0 as u8) << 2),
0...0b00111111_11111111 => (((self.0 as u16) << 2) | 0b01).encode_to(dest),
0...0b00111111_11111111_11111111_11111111 => (((self.0 as u32) << 2) | 0b10).encode_to(dest),
_ => {
let bytes_needed = 16 - self.0.leading_zeros() / 8;
assert!(bytes_needed >= 4, "Previous match arm matches anyting less than 2^30; qed");
dest.push_byte(0b11 + ((bytes_needed - 4) << 2) as u8);
let mut v = self.0;
for _ in 0..bytes_needed {
dest.push_byte(v as u8);
v >>= 8;
}
assert_eq!(v, 0, "shifted sufficient bits right to lead only leading zeros; qed")
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
impl Decode for Compact<u8> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let prefix = input.read_byte()?;
Some(Compact(match prefix % 4 {
0 => prefix as u8 >> 2,
1 => {
let x = u16::decode(&mut PrefixInput{prefix: Some(prefix), input})? >> 2;
if x < 256 {
x as u8
} else {
return None
}
}
_ => return None,
}))
}
}
impl Decode for Compact<u16> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let prefix = input.read_byte()?;
Some(Compact(match prefix % 4 {
0 => prefix as u16 >> 2,
1 => u16::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u16 >> 2,
2 => {
let x = u32::decode(&mut PrefixInput{prefix: Some(prefix), input})? >> 2;
if x < 65536 {
x as u16
} else {
return None
}
}
_ => return None,
}))
}
}
impl Decode for Compact<u32> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let prefix = input.read_byte()?;
Some(Compact(match prefix % 4 {
0 => prefix as u32 >> 2,
1 => u16::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u32 >> 2,
2 => u32::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u32 >> 2,
3|_ => { // |_. yeah, i know.
if prefix >> 2 == 0 {
// just 4 bytes. ok.
u32::decode(input)?
} else {
// Out of range for a 32-bit quantity.
return None
}
}
}))
}
}
impl Decode for Compact<u64> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let prefix = input.read_byte()?;
Some(Compact(match prefix % 4 {
0 => prefix as u64 >> 2,
1 => u16::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u64 >> 2,
2 => u32::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u64 >> 2,
3|_ => match (prefix >> 2) + 4 {
4 => u32::decode(input)? as u64,
8 => u64::decode(input)?,
x if x > 8 => return None,
bytes_needed => {
let mut res = 0;
for i in 0..bytes_needed {
res |= (input.read_byte()? as u64) << (i * 8);
}
res
}
}
}))
}
}
impl Decode for Compact<u128> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let prefix = input.read_byte()?;
Some(Compact(match prefix % 4 {
0 => prefix as u128 >> 2,
1 => u16::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u128 >> 2,
2 => u32::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u128 >> 2,
3|_ => match (prefix >> 2) + 4 {
4 => u32::decode(input)? as u128,
8 => u64::decode(input)? as u128,
16 => u128::decode(input)?,
x if x > 16 => return None,
bytes_needed => {
let mut res = 0;
for i in 0..bytes_needed {
res |= (input.read_byte()? as u128) << (i * 8);
}
res
}
}
}))
}
}
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
impl<S: Decode + Encode> Codec for S {}
impl<T: Encode, E: Encode> Encode for Result<T, E> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match *self {
Ok(ref t) => {
dest.push_byte(0);
t.encode_to(dest);
}
Err(ref e) => {
dest.push_byte(1);
e.encode_to(dest);
}
}
}
}
impl<T: Decode, E: Decode> Decode for Result<T, E> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
match input.read_byte()? {
0 => Some(Ok(T::decode(input)?)),
1 => Some(Err(E::decode(input)?)),
_ => None,
}
}
}
/// Shim type because we can't do a specialised implementation for `Option<bool>` directly.
pub struct OptionBool(pub Option<bool>);
impl Encode for OptionBool {
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&[match *self {
OptionBool(None) => 0u8,
OptionBool(Some(true)) => 1u8,
OptionBool(Some(false)) => 2u8,
}])
}
}
impl Decode for OptionBool {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
match input.read_byte()? {
0 => Some(OptionBool(None)),
1 => Some(OptionBool(Some(true))),
2 => Some(OptionBool(Some(false))),
_ => None,
}
}
}
impl<T: Encode> Encode for Option<T> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match *self {
Some(ref t) => {
dest.push_byte(1);
t.encode_to(dest);
}
None => dest.push_byte(0),
}
}
}
impl<T: Decode> Decode for Option<T> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
match input.read_byte()? {
0 => Some(None),
1 => Some(Some(T::decode(input)?)),
_ => None,
}
}
}
macro_rules! impl_array {
( $( $n:expr )* ) => { $(
impl<T: Encode> Encode for [T; $n] {
fn encode_to<W: Output>(&self, dest: &mut W) {
for item in self.iter() {
item.encode_to(dest);
}
}
}
impl<T: Decode> Decode for [T; $n] {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let mut r = ArrayVec::new();
for _ in 0..$n {
r.push(T::decode(input)?);
}
r.into_inner().ok()
}
}
)* }
}
impl_array!(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
40 48 56 64 72 96 128 160 192 224 256);
impl<T: Encode> Encode for Box<T> {
fn encode_to<W: Output>(&self, dest: &mut W) {
self.as_ref().encode_to(dest)
}
}
impl<T: Decode> Decode for Box<T> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
Some(Box::new(T::decode(input)?))
}
}
impl Encode for [u8] {
fn encode_to<W: Output>(&self, dest: &mut W) {
let len = self.len();
assert!(len <= u32::max_value() as usize, "Attempted to serialize a collection with too many elements.");
dest.write(self)
}
}
impl Encode for Vec<u8> {
fn encode_to<W: Output>(&self, dest: &mut W) {
self.as_slice().encode_to(dest)
}
}
impl Decode for Vec<u8> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
<Compact<u32>>::decode(input).and_then(move |Compact(len)| {
let len = len as usize;
let mut vec = vec![0; len];
if input.read(&mut vec[..len]) != len {
None
} else {
Some(vec)
}
})
}
}
impl<'a> Encode for &'a str {
fn encode_to<W: Output>(&self, dest: &mut W) {
self.as_bytes().encode_to(dest)
}
}
#[cfg(feature = "std")]
impl<'a, T: ToOwned + ?Sized + 'a> Encode for ::std::borrow::Cow<'a, T> where
&'a T: Encode,
<T as ToOwned>::Owned: Encode
{
match self {
::std::borrow::Cow::Owned(ref x) => x.encode_to(dest),
::std::borrow::Cow::Borrowed(x) => x.encode_to(dest),
}
impl<'a, T: ToOwned + ?Sized> Decode for ::std::borrow::Cow<'a, T> where
<T as ToOwned>::Owned: Decode
{
fn decode<I: Input>(input: &mut I) -> Option<Self> {
#[cfg(feature = "std")]
impl<T> Encode for ::std::marker::PhantomData<T> {
}
#[cfg(feature = "std")]
impl<T> Decode for ::std::marker::PhantomData<T> {
fn decode<I: Input>(_input: &mut I) -> Option<Self> {
Some(::std::marker::PhantomData)
}
#[cfg(feature = "std")]
impl Encode for String {
fn encode_to<W: Output>(&self, dest: &mut W) {
self.as_bytes().encode_to(dest)
}
}
#[cfg(feature = "std")]
impl Decode for String {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
Some(Self::from_utf8_lossy(&Vec::decode(input)?).into())
}
}
impl<T: Encode> Encode for [T] {
fn encode_to<W: Output>(&self, dest: &mut W) {
let len = self.len();
assert!(len <= u32::max_value() as usize, "Attempted to serialize a collection with too many elements.");
for item in self {
item.encode_to(dest);
}
}
}
impl<T: Encode> Encode for Vec<T> {
fn encode_to<W: Output>(&self, dest: &mut W) {
self.as_slice().encode_to(dest)
}
}
impl<T: Decode> Decode for Vec<T> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
<Compact<u32>>::decode(input).and_then(move |Compact(len)| {
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
let mut r = Vec::with_capacity(len as usize);
for _ in 0..len {
r.push(T::decode(input)?);
}
Some(r)
})
}
}
impl Encode for () {
fn encode_to<T: Output>(&self, _dest: &mut T) {
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&[])
}
fn encode(&self) -> Vec<u8> {
Vec::new()
}
}
impl<'a, T: 'a + Encode + ?Sized> Encode for &'a T {
fn encode_to<D: Output>(&self, dest: &mut D) {
(&**self).encode_to(dest)
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
(&**self).using_encoded(f)
}
fn encode(&self) -> Vec<u8> {
(&**self).encode()
}
}
impl Decode for () {
fn decode<I: Input>(_: &mut I) -> Option<()> {
Some(())
}
}
macro_rules! tuple_impl {
($one:ident,) => {
impl<$one: Encode> Encode for ($one,) {
fn encode_to<T: Output>(&self, dest: &mut T) {
self.0.encode_to(dest);
}
}
impl<$one: Decode> Decode for ($one,) {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
match $one::decode(input) {
None => None,
Some($one) => Some(($one,)),
}
}
}
};
($first:ident, $($rest:ident,)+) => {
impl<$first: Encode, $($rest: Encode),+>
Encode for
($first, $($rest),+) {
fn encode_to<T: Output>(&self, dest: &mut T) {
let (
ref $first,
$(ref $rest),+
) = *self;
$first.encode_to(dest);
$($rest.encode_to(dest);)+
}
}
impl<$first: Decode, $($rest: Decode),+>
Decode for
($first, $($rest),+) {
fn decode<INPUT: Input>(input: &mut INPUT) -> Option<Self> {
Some((
match $first::decode(input) {
Some(x) => x,
None => return None,
},
$(match $rest::decode(input) {
Some(x) => x,
None => return None,
},)+
))
}
}
tuple_impl!($($rest,)+);
}
}
#[allow(non_snake_case)]
mod inner_tuple_impl {
use super::{Input, Output, Decode, Encode};
tuple_impl!(A, B, C, D, E, F, G, H, I, J, K,);
}
/// Trait to allow conversion to a know endian representation when sensitive.
/// Types implementing this trait must have a size > 0.
// note: the copy bound and static lifetimes are necessary for safety of `Codec` blanket
// implementation.
trait EndianSensitive: Copy + 'static {
fn to_le(self) -> Self { self }
fn to_be(self) -> Self { self }
fn from_le(self) -> Self { self }
fn from_be(self) -> Self { self }
fn as_be_then<T, F: FnOnce(&Self) -> T>(&self, f: F) -> T { f(&self) }
fn as_le_then<T, F: FnOnce(&Self) -> T>(&self, f: F) -> T { f(&self) }
}
macro_rules! impl_endians {
( $( $t:ty ),* ) => { $(
impl EndianSensitive for $t {
fn to_le(self) -> Self { <$t>::to_le(self) }
fn to_be(self) -> Self { <$t>::to_be(self) }
fn from_le(self) -> Self { <$t>::from_le(self) }
fn from_be(self) -> Self { <$t>::from_be(self) }
fn as_be_then<T, F: FnOnce(&Self) -> T>(&self, f: F) -> T { let d = self.to_be(); f(&d) }
fn as_le_then<T, F: FnOnce(&Self) -> T>(&self, f: F) -> T { let d = self.to_le(); f(&d) }
}
impl Encode for $t {
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
self.as_le_then(|le| {
let size = mem::size_of::<$t>();
let value_slice = unsafe {
let ptr = le as *const _ as *const u8;
if size != 0 {
slice::from_raw_parts(ptr, size)
} else {
&[]
}
};
f(value_slice)
})
}
}
impl Decode for $t {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let size = mem::size_of::<$t>();
assert!(size > 0, "EndianSensitive can never be implemented for a zero-sized type.");
let mut val: $t = unsafe { mem::zeroed() };
unsafe {
let raw: &mut [u8] = slice::from_raw_parts_mut(
&mut val as *mut $t as *mut u8,
size
);
if input.read(raw) != size { return None }
}
Some(val.from_le())
}
}
)* }
}
macro_rules! impl_non_endians {
( $( $t:ty ),* ) => { $(
impl EndianSensitive for $t {}
impl Encode for $t {
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
self.as_le_then(|le| {
let size = mem::size_of::<$t>();
let value_slice = unsafe {
let ptr = le as *const _ as *const u8;
if size != 0 {
slice::from_raw_parts(ptr, size)
} else {
&[]
}
};
f(value_slice)
})
}
}
impl Decode for $t {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let size = mem::size_of::<$t>();
assert!(size > 0, "EndianSensitive can never be implemented for a zero-sized type.");
let mut val: $t = unsafe { mem::zeroed() };
unsafe {
let raw: &mut [u8] = slice::from_raw_parts_mut(
&mut val as *mut $t as *mut u8,
size
);
if input.read(raw) != size { return None }
}
Some(val.from_le())
}
}
)* }
}
impl_endians!(u16, u32, u64, u128, usize, i16, i32, i64, i128, isize);
impl_non_endians!(i8, [u8; 1], [u8; 2], [u8; 3], [u8; 4], [u8; 5], [u8; 6], [u8; 7], [u8; 8],
[u8; 10], [u8; 12], [u8; 14], [u8; 16], [u8; 20], [u8; 24], [u8; 28], [u8; 32], [u8; 40],
[u8; 48], [u8; 56], [u8; 64], [u8; 80], [u8; 96], [u8; 112], [u8; 128], bool);
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn vec_is_slicable() {
let v = b"Hello world".to_vec();
v.using_encoded(|ref slice|
);
}
#[test]
fn encode_borrowed_tuple() {
let x = vec![1u8, 2, 3, 4];
let y = 128i64;
let encoded = (&x, &y).encode();
assert_eq!((x, y), Decode::decode(&mut &encoded[..]).unwrap());
}
#[test]
fn cow_works() {
let x = &[1u32, 2, 3, 4, 5, 6][..];
let y = Cow::Borrowed(&x);
assert_eq!(x.encode(), y.encode());
let z: Cow<[u32]> = Cow::decode(&mut &x.encode()[..]).unwrap();
assert_eq!(*z, *x);
}
#[test]
fn cow_string_works() {
let x = "Hello world!";
let y = Cow::Borrowed(&x);
assert_eq!(x.encode(), y.encode());
let z: Cow<str> = Cow::decode(&mut &x.encode()[..]).unwrap();
assert_eq!(*z, *x);
}
fn compact_128_encoding_works() {
let tests = [
(0u128, 1usize), (63, 1), (64, 2), (16383, 2),
(16384, 4), (1073741823, 4),
(1073741824, 5), (1 << 32 - 1, 5),
(1 << 32, 6), (1 << 40, 7), (1 << 48, 8), (1 << 56 - 1, 8), (1 << 56, 9), (1 << 64 - 1, 9),
(1 << 64, 10), (1 << 72, 11), (1 << 80, 12), (1 << 88, 13), (1 << 96, 14), (1 << 104, 15),
(1 << 112, 16), (1 << 120 - 1, 16), (1 << 120, 17), (u128::max_value(), 17)
];
for &(n, l) in &tests {
let encoded = Compact(n as u128).encode();
assert_eq!(encoded.len(), l);
assert_eq!(<Compact<u128>>::decode(&mut &encoded[..]).unwrap().0, n);
}
}
#[test]
fn compact_64_encoding_works() {
let tests = [
(0u64, 1usize), (63, 1), (64, 2), (16383, 2),
(16384, 4), (1073741823, 4),
(1073741824, 5), (1 << 32 - 1, 5),
(1 << 32, 6), (1 << 40, 7), (1 << 48, 8), (1 << 56 - 1, 8), (1 << 56, 9), (u64::max_value(), 9)
];
for &(n, l) in &tests {
let encoded = Compact(n as u64).encode();
assert_eq!(encoded.len(), l);
assert_eq!(<Compact<u64>>::decode(&mut &encoded[..]).unwrap().0, n);
}
}
#[test]
fn compact_32_encoding_works() {
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
let tests = [(0u32, 1usize), (63, 1), (64, 2), (16383, 2), (16384, 4), (1073741823, 4), (1073741824, 5), (u32::max_value(), 5)];
for &(n, l) in &tests {
let encoded = Compact(n as u32).encode();
assert_eq!(encoded.len(), l);
assert_eq!(<Compact<u32>>::decode(&mut &encoded[..]).unwrap().0, n);
}
}
#[test]
fn compact_16_encoding_works() {
let tests = [(0u16, 1usize), (63, 1), (64, 2), (16383, 2), (16384, 4), (65535, 4)];
for &(n, l) in &tests {
let encoded = Compact(n as u16).encode();
assert_eq!(encoded.len(), l);
assert_eq!(<Compact<u16>>::decode(&mut &encoded[..]).unwrap().0, n);
}
assert!(<Compact<u16>>::decode(&mut &Compact(65536u32).encode()[..]).is_none());
}
#[test]
fn compact_8_encoding_works() {
let tests = [(0u8, 1usize), (63, 1), (64, 2), (255, 2)];
for &(n, l) in &tests {
let encoded = Compact(n as u8).encode();
assert_eq!(encoded.len(), l);
assert_eq!(<Compact<u8>>::decode(&mut &encoded[..]).unwrap().0, n);
}
assert!(<Compact<u8>>::decode(&mut &Compact(256u32).encode()[..]).is_none());
}