Newer
Older
// Copyright 2017, 2018 Parity Technologies
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
//! Serialisation.
use alloc::vec::Vec;
use alloc::boxed::Box;
use core::{mem, slice};
use arrayvec::ArrayVec;
/// Trait that allows reading of data into a slice.
pub trait Input {
/// Read into the provided input slice. Returns the number of bytes read.
fn read(&mut self, into: &mut [u8]) -> usize;
/// Read a single byte from the input.
fn read_byte(&mut self) -> Option<u8> {
let mut buf = [0u8];
match self.read(&mut buf[..]) {
0 => None,
1 => Some(buf[0]),
_ => unreachable!(),
}
}
}
#[cfg(not(feature = "std"))]
impl<'a> Input for &'a [u8] {
fn read(&mut self, into: &mut [u8]) -> usize {
let len = ::core::cmp::min(into.len(), self.len());
into[..len].copy_from_slice(&self[..len]);
*self = &self[len..];
len
}
}
#[cfg(feature = "std")]
impl<R: ::std::io::Read> Input for R {
fn read(&mut self, into: &mut [u8]) -> usize {
match (self as &mut ::std::io::Read).read_exact(into) {
Ok(()) => into.len(),
Err(_) => 0,
}
}
}
/// Prefix another input with a byte.
struct PrefixInput<'a, T: 'a> {
prefix: Option<u8>,
input: &'a mut T,
}
impl<'a, T: 'a + Input> Input for PrefixInput<'a, T> {
fn read(&mut self, buffer: &mut [u8]) -> usize {
match self.prefix.take() {
Some(v) if buffer.len() > 0 => {
buffer[0] = v;
1 + self.input.read(&mut buffer[1..])
}
_ => self.input.read(buffer)
}
}
}
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/// Trait that allows writing of data.
pub trait Output: Sized {
/// Write to the output.
fn write(&mut self, bytes: &[u8]);
fn push_byte(&mut self, byte: u8) {
self.write(&[byte]);
}
fn push<V: Encode + ?Sized>(&mut self, value: &V) {
value.encode_to(self);
}
}
#[cfg(not(feature = "std"))]
impl Output for Vec<u8> {
fn write(&mut self, bytes: &[u8]) {
self.extend(bytes);
}
}
#[cfg(feature = "std")]
impl<W: ::std::io::Write> Output for W {
fn write(&mut self, bytes: &[u8]) {
(self as &mut ::std::io::Write).write_all(bytes).expect("Codec outputs are infallible");
}
}
/// Trait that allows zero-copy write of value-references to slices in LE format.
/// Implementations should override `using_encoded` for value types and `encode_to` for allocating types.
pub trait Encode {
/// Convert self to a slice and append it to the destination.
fn encode_to<T: Output>(&self, dest: &mut T) {
self.using_encoded(|buf| dest.write(buf));
}
/// Convert self to an owned vector.
fn encode(&self) -> Vec<u8> {
let mut r = Vec::new();
self.encode_to(&mut r);
r
}
/// Convert self to a slice and then invoke the given closure with it.
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&self.encode())
}
}
/// Trait that allows zero-copy read of value-references from slices in LE format.
pub trait Decode: Sized {
/// Attempt to deserialise the value from input.
fn decode<I: Input>(value: &mut I) -> Option<Self>;
}
/// Trait that allows zero-copy read/write of value-references to/from slices in LE format.
pub trait Codec: Decode + Encode {}
/// Compact-encoded variant of T. This is more space-efficient but less compute-efficient.
#[derive(Eq, PartialEq, Clone, Copy, Ord, PartialOrd)]
impl<T> From<T> for Compact<T> {
fn from(x: T) -> Compact<T> { Compact(x) }
}
impl<'a, T: Copy> From<&'a T> for Compact<T> {
fn from(x: &'a T) -> Compact<T> { Compact(*x) }
}
macro_rules! impl_from_compact {
( $( $ty:ty ),* ) => {
$(
impl From<Compact<$ty>> for $ty {
fn from(x: Compact<$ty>) -> $ty { x.0 }
}
)*
}
impl_from_compact! { u8, u16, u32, u64, u128 }
/// Compact-encoded variant of &'a T. This is more space-efficient but less compute-efficient.
#[derive(Eq, PartialEq, Clone, Copy)]
pub struct CompactRef<'a, T: 'a>(pub &'a T);
impl<'a, T> From<&'a T> for CompactRef<'a, T> {
fn from(x: &'a T) -> Self { CompactRef(x) }
}
pub trait MaybeDebugSerde: ::std::fmt::Debug + ::serde::Serialize + for<'a> ::serde::Deserialize<'a> {}
impl<T> MaybeDebugSerde for T where T: ::std::fmt::Debug + ::serde::Serialize + for<'a> ::serde::Deserialize<'a> {}
impl<T> MaybeDebugSerde for T {}
#[cfg(feature = "std")]
impl<T> ::std::fmt::Debug for Compact<T> where T: ::std::fmt::Debug {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
self.0.fmt(f)
}
}
#[cfg(feature = "std")]
impl<T> ::serde::Serialize for Compact<T> where T: ::serde::Serialize {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: ::serde::Serializer {
T::serialize(&self.0, serializer)
}
}
#[cfg(feature = "std")]
impl<'de, T> ::serde::Deserialize<'de> for Compact<T> where T: ::serde::Deserialize<'de> {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: ::serde::Deserializer<'de> {
T::deserialize(deserializer).map(Compact)
}
}
/// Trait that tells you if a given type can be encoded/decoded in a compact way.
/// The compact type; this can be
type Type: for<'a> EncodeAsRef<'a, Self> + Decode + Into<Self> + Clone +
PartialEq + Eq + MaybeDebugSerde;
/// Something that can be encoded as a reference.
pub trait EncodeAsRef<'a, T: 'a> {
/// The reference type that is used for encoding.
type RefType: Encode + From<&'a T>;
}
impl<'a, T: 'a> EncodeAsRef<'a, T> for Compact<T> where CompactRef<'a, T>: Encode + From<&'a T> {
type RefType = CompactRef<'a, T>;
}
impl<T: 'static> HasCompact for T where
Compact<T>: for<'a> EncodeAsRef<'a, T> + Decode + Into<Self> + Clone +
PartialEq + Eq + MaybeDebugSerde,
type Type = Compact<T>;
}
// compact encoding:
// 0b00 00 00 00 / 00 00 00 00 / 00 00 00 00 / 00 00 00 00
// xx xx xx 00 (0 ... 2**6 - 1) (u8)
// yL yL yL 01 / yH yH yH yL (2**6 ... 2**14 - 1) (u8, u16) low LH high
// zL zL zL 10 / zM zM zM zL / zM zM zM zM / zH zH zH zM (2**14 ... 2**30 - 1) (u16, u32) low LMMH high
// nn nn nn 11 [ / zz zz zz zz ]{4 + n} (2**30 ... 2**536 - 1) (u32, u64, u128, U256, U512, U520) straight LE-encoded
// Note: we use *LOW BITS* of the LSB in LE encoding to encode the 2 bit key.
impl<'a> Encode for CompactRef<'a, u8> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match self.0 {
0...0b00111111 => dest.push_byte(self.0 << 2),
_ => (((*self.0 as u16) << 2) | 0b01).encode_to(dest),
impl Encode for Compact<u8> {
fn encode_to<W: Output>(&self, dest: &mut W) {
CompactRef(&self.0).encode_to(dest)
}
}
impl<'a> Encode for CompactRef<'a, u16> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match self.0 {
0...0b00111111 => dest.push_byte((*self.0 as u8) << 2),
0...0b00111111_11111111 => ((*self.0 << 2) | 0b01).encode_to(dest),
_ => (((*self.0 as u32) << 2) | 0b10).encode_to(dest),
impl Encode for Compact<u16> {
fn encode_to<W: Output>(&self, dest: &mut W) {
CompactRef(&self.0).encode_to(dest)
}
}
impl<'a> Encode for CompactRef<'a, u32> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match self.0 {
0...0b00111111 => dest.push_byte((*self.0 as u8) << 2),
0...0b00111111_11111111 => (((*self.0 as u16) << 2) | 0b01).encode_to(dest),
0...0b00111111_11111111_11111111_11111111 => ((*self.0 << 2) | 0b10).encode_to(dest),
_ => {
dest.push_byte(0b11);
self.0.encode_to(dest);
}
}
}
}
impl Encode for Compact<u32> {
fn encode_to<W: Output>(&self, dest: &mut W) {
CompactRef(&self.0).encode_to(dest)
}
}
impl<'a> Encode for CompactRef<'a, u64> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match self.0 {
0...0b00111111 => dest.push_byte((*self.0 as u8) << 2),
0...0b00111111_11111111 => (((*self.0 as u16) << 2) | 0b01).encode_to(dest),
0...0b00111111_11111111_11111111_11111111 => (((*self.0 as u32) << 2) | 0b10).encode_to(dest),
let bytes_needed = 8 - self.0.leading_zeros() / 8;
assert!(bytes_needed >= 4, "Previous match arm matches anyting less than 2^30; qed");
dest.push_byte(0b11 + ((bytes_needed - 4) << 2) as u8);
let mut v = *self.0;
for _ in 0..bytes_needed {
dest.push_byte(v as u8);
v >>= 8;
}
assert_eq!(v, 0, "shifted sufficient bits right to lead only leading zeros; qed")
impl Encode for Compact<u64> {
fn encode_to<W: Output>(&self, dest: &mut W) {
CompactRef(&self.0).encode_to(dest)
}
}
impl<'a> Encode for CompactRef<'a, u128> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match self.0 {
0...0b00111111 => dest.push_byte((*self.0 as u8) << 2),
0...0b00111111_11111111 => (((*self.0 as u16) << 2) | 0b01).encode_to(dest),
0...0b00111111_11111111_11111111_11111111 => (((*self.0 as u32) << 2) | 0b10).encode_to(dest),
let bytes_needed = 16 - self.0.leading_zeros() / 8;
assert!(bytes_needed >= 4, "Previous match arm matches anyting less than 2^30; qed");
dest.push_byte(0b11 + ((bytes_needed - 4) << 2) as u8);
let mut v = *self.0;
for _ in 0..bytes_needed {
dest.push_byte(v as u8);
v >>= 8;
}
assert_eq!(v, 0, "shifted sufficient bits right to lead only leading zeros; qed")
impl Encode for Compact<u128> {
fn encode_to<W: Output>(&self, dest: &mut W) {
CompactRef(&self.0).encode_to(dest)
}
}
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
impl Decode for Compact<u8> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let prefix = input.read_byte()?;
Some(Compact(match prefix % 4 {
0 => prefix as u8 >> 2,
1 => {
let x = u16::decode(&mut PrefixInput{prefix: Some(prefix), input})? >> 2;
if x < 256 {
x as u8
} else {
return None
}
}
_ => return None,
}))
}
}
impl Decode for Compact<u16> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let prefix = input.read_byte()?;
Some(Compact(match prefix % 4 {
0 => prefix as u16 >> 2,
1 => u16::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u16 >> 2,
2 => {
let x = u32::decode(&mut PrefixInput{prefix: Some(prefix), input})? >> 2;
if x < 65536 {
x as u16
} else {
return None
}
}
_ => return None,
}))
}
}
impl Decode for Compact<u32> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let prefix = input.read_byte()?;
Some(Compact(match prefix % 4 {
0 => prefix as u32 >> 2,
1 => u16::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u32 >> 2,
2 => u32::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u32 >> 2,
3|_ => { // |_. yeah, i know.
if prefix >> 2 == 0 {
// just 4 bytes. ok.
u32::decode(input)?
} else {
// Out of range for a 32-bit quantity.
return None
}
}
}))
}
}
impl Decode for Compact<u64> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let prefix = input.read_byte()?;
Some(Compact(match prefix % 4 {
0 => prefix as u64 >> 2,
1 => u16::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u64 >> 2,
2 => u32::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u64 >> 2,
3|_ => match (prefix >> 2) + 4 {
4 => u32::decode(input)? as u64,
8 => u64::decode(input)?,
x if x > 8 => return None,
bytes_needed => {
let mut res = 0;
for i in 0..bytes_needed {
res |= (input.read_byte()? as u64) << (i * 8);
}
res
}
}
}))
}
}
impl Decode for Compact<u128> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let prefix = input.read_byte()?;
Some(Compact(match prefix % 4 {
0 => prefix as u128 >> 2,
1 => u16::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u128 >> 2,
2 => u32::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u128 >> 2,
3|_ => match (prefix >> 2) + 4 {
4 => u32::decode(input)? as u128,
8 => u64::decode(input)? as u128,
16 => u128::decode(input)?,
x if x > 16 => return None,
bytes_needed => {
let mut res = 0;
for i in 0..bytes_needed {
res |= (input.read_byte()? as u128) << (i * 8);
}
res
}
}
}))
}
}
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
impl<S: Decode + Encode> Codec for S {}
impl<T: Encode, E: Encode> Encode for Result<T, E> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match *self {
Ok(ref t) => {
dest.push_byte(0);
t.encode_to(dest);
}
Err(ref e) => {
dest.push_byte(1);
e.encode_to(dest);
}
}
}
}
impl<T: Decode, E: Decode> Decode for Result<T, E> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
match input.read_byte()? {
0 => Some(Ok(T::decode(input)?)),
1 => Some(Err(E::decode(input)?)),
_ => None,
}
}
}
/// Shim type because we can't do a specialised implementation for `Option<bool>` directly.
#[cfg(feature = "std")]
impl ::std::fmt::Debug for OptionBool {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
self.0.fmt(f)
}
}
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
impl Encode for OptionBool {
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&[match *self {
OptionBool(None) => 0u8,
OptionBool(Some(true)) => 1u8,
OptionBool(Some(false)) => 2u8,
}])
}
}
impl Decode for OptionBool {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
match input.read_byte()? {
0 => Some(OptionBool(None)),
1 => Some(OptionBool(Some(true))),
2 => Some(OptionBool(Some(false))),
_ => None,
}
}
}
impl<T: Encode> Encode for Option<T> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match *self {
Some(ref t) => {
dest.push_byte(1);
t.encode_to(dest);
}
None => dest.push_byte(0),
}
}
}
impl<T: Decode> Decode for Option<T> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
match input.read_byte()? {
0 => Some(None),
1 => Some(Some(T::decode(input)?)),
_ => None,
}
}
}
macro_rules! impl_array {
( $( $n:expr )* ) => { $(
impl<T: Encode> Encode for [T; $n] {
fn encode_to<W: Output>(&self, dest: &mut W) {
for item in self.iter() {
item.encode_to(dest);
}
}
}
impl<T: Decode> Decode for [T; $n] {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let mut r = ArrayVec::new();
for _ in 0..$n {
r.push(T::decode(input)?);
}
r.into_inner().ok()
}
}
)* }
}
impl_array!(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
40 48 56 64 72 96 128 160 192 224 256);
impl<T: Encode> Encode for Box<T> {
fn encode_to<W: Output>(&self, dest: &mut W) {
self.as_ref().encode_to(dest)
}
}
impl<T: Decode> Decode for Box<T> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
Some(Box::new(T::decode(input)?))
}
}
impl Encode for [u8] {
fn encode_to<W: Output>(&self, dest: &mut W) {
let len = self.len();
assert!(len <= u32::max_value() as usize, "Attempted to serialize a collection with too many elements.");
dest.write(self)
}
}
impl Encode for Vec<u8> {
fn encode_to<W: Output>(&self, dest: &mut W) {
self.as_slice().encode_to(dest)
}
}
impl Decode for Vec<u8> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
<Compact<u32>>::decode(input).and_then(move |Compact(len)| {
let len = len as usize;
let mut vec = vec![0; len];
if input.read(&mut vec[..len]) != len {
None
} else {
Some(vec)
}
})
}
}
impl<'a> Encode for &'a str {
fn encode_to<W: Output>(&self, dest: &mut W) {
self.as_bytes().encode_to(dest)
}
}
#[cfg(feature = "std")]
impl<'a, T: ToOwned + ?Sized + 'a> Encode for ::std::borrow::Cow<'a, T> where
&'a T: Encode,
<T as ToOwned>::Owned: Encode
{
match self {
::std::borrow::Cow::Owned(ref x) => x.encode_to(dest),
::std::borrow::Cow::Borrowed(x) => x.encode_to(dest),
}
impl<'a, T: ToOwned + ?Sized> Decode for ::std::borrow::Cow<'a, T> where
<T as ToOwned>::Owned: Decode
{
fn decode<I: Input>(input: &mut I) -> Option<Self> {
#[cfg(feature = "std")]
impl<T> Encode for ::std::marker::PhantomData<T> {
}
#[cfg(feature = "std")]
impl<T> Decode for ::std::marker::PhantomData<T> {
fn decode<I: Input>(_input: &mut I) -> Option<Self> {
Some(::std::marker::PhantomData)
}
#[cfg(feature = "std")]
impl Encode for String {
fn encode_to<W: Output>(&self, dest: &mut W) {
self.as_bytes().encode_to(dest)
}
}
#[cfg(feature = "std")]
impl Decode for String {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
Some(Self::from_utf8_lossy(&Vec::decode(input)?).into())
}
}
impl<T: Encode> Encode for [T] {
fn encode_to<W: Output>(&self, dest: &mut W) {
let len = self.len();
assert!(len <= u32::max_value() as usize, "Attempted to serialize a collection with too many elements.");
for item in self {
item.encode_to(dest);
}
}
}
impl<T: Encode> Encode for Vec<T> {
fn encode_to<W: Output>(&self, dest: &mut W) {
self.as_slice().encode_to(dest)
}
}
impl<T: Decode> Decode for Vec<T> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
<Compact<u32>>::decode(input).and_then(move |Compact(len)| {
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
let mut r = Vec::with_capacity(len as usize);
for _ in 0..len {
r.push(T::decode(input)?);
}
Some(r)
})
}
}
impl Encode for () {
fn encode_to<T: Output>(&self, _dest: &mut T) {
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&[])
}
fn encode(&self) -> Vec<u8> {
Vec::new()
}
}
impl<'a, T: 'a + Encode + ?Sized> Encode for &'a T {
fn encode_to<D: Output>(&self, dest: &mut D) {
(&**self).encode_to(dest)
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
(&**self).using_encoded(f)
}
fn encode(&self) -> Vec<u8> {
(&**self).encode()
}
}
impl Decode for () {
fn decode<I: Input>(_: &mut I) -> Option<()> {
Some(())
}
}
macro_rules! tuple_impl {
($one:ident,) => {
impl<$one: Encode> Encode for ($one,) {
fn encode_to<T: Output>(&self, dest: &mut T) {
self.0.encode_to(dest);
}
}
impl<$one: Decode> Decode for ($one,) {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
match $one::decode(input) {
None => None,
Some($one) => Some(($one,)),
}
}
}
};
($first:ident, $($rest:ident,)+) => {
impl<$first: Encode, $($rest: Encode),+>
Encode for
($first, $($rest),+) {
fn encode_to<T: Output>(&self, dest: &mut T) {
let (
ref $first,
$(ref $rest),+
) = *self;
$first.encode_to(dest);
$($rest.encode_to(dest);)+
}
}
impl<$first: Decode, $($rest: Decode),+>
Decode for
($first, $($rest),+) {
fn decode<INPUT: Input>(input: &mut INPUT) -> Option<Self> {
Some((
match $first::decode(input) {
Some(x) => x,
None => return None,
},
$(match $rest::decode(input) {
Some(x) => x,
None => return None,
},)+
))
}
}
tuple_impl!($($rest,)+);
}
}
#[allow(non_snake_case)]
mod inner_tuple_impl {
use super::{Input, Output, Decode, Encode};
tuple_impl!(A, B, C, D, E, F, G, H, I, J, K,);
}
/// Trait to allow conversion to a know endian representation when sensitive.
/// Types implementing this trait must have a size > 0.
// note: the copy bound and static lifetimes are necessary for safety of `Codec` blanket
// implementation.
trait EndianSensitive: Copy + 'static {
fn to_le(self) -> Self { self }
fn to_be(self) -> Self { self }
fn from_le(self) -> Self { self }
fn from_be(self) -> Self { self }
fn as_be_then<T, F: FnOnce(&Self) -> T>(&self, f: F) -> T { f(&self) }
fn as_le_then<T, F: FnOnce(&Self) -> T>(&self, f: F) -> T { f(&self) }
}
macro_rules! impl_endians {
( $( $t:ty ),* ) => { $(
impl EndianSensitive for $t {
fn to_le(self) -> Self { <$t>::to_le(self) }
fn to_be(self) -> Self { <$t>::to_be(self) }
fn from_le(self) -> Self { <$t>::from_le(self) }
fn from_be(self) -> Self { <$t>::from_be(self) }
fn as_be_then<T, F: FnOnce(&Self) -> T>(&self, f: F) -> T { let d = self.to_be(); f(&d) }
fn as_le_then<T, F: FnOnce(&Self) -> T>(&self, f: F) -> T { let d = self.to_le(); f(&d) }
}
impl Encode for $t {
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
self.as_le_then(|le| {
let size = mem::size_of::<$t>();
let value_slice = unsafe {
let ptr = le as *const _ as *const u8;
if size != 0 {
slice::from_raw_parts(ptr, size)
} else {
&[]
}
};
f(value_slice)
})
}
}
impl Decode for $t {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let size = mem::size_of::<$t>();
assert!(size > 0, "EndianSensitive can never be implemented for a zero-sized type.");
let mut val: $t = unsafe { mem::zeroed() };
unsafe {
let raw: &mut [u8] = slice::from_raw_parts_mut(
&mut val as *mut $t as *mut u8,
size
);
if input.read(raw) != size { return None }
}
Some(val.from_le())
}
}
)* }
}
macro_rules! impl_non_endians {
( $( $t:ty ),* ) => { $(
impl EndianSensitive for $t {}
impl Encode for $t {
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
self.as_le_then(|le| {
let size = mem::size_of::<$t>();
let value_slice = unsafe {
let ptr = le as *const _ as *const u8;
if size != 0 {
slice::from_raw_parts(ptr, size)
} else {
&[]
}
};
f(value_slice)
})
}
}
impl Decode for $t {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let size = mem::size_of::<$t>();
assert!(size > 0, "EndianSensitive can never be implemented for a zero-sized type.");
let mut val: $t = unsafe { mem::zeroed() };
unsafe {
let raw: &mut [u8] = slice::from_raw_parts_mut(
&mut val as *mut $t as *mut u8,
size
);
if input.read(raw) != size { return None }
}
Some(val.from_le())
}
}
)* }
}
impl_endians!(u16, u32, u64, u128, usize, i16, i32, i64, i128, isize);
impl_non_endians!(i8, [u8; 1], [u8; 2], [u8; 3], [u8; 4], [u8; 5], [u8; 6], [u8; 7], [u8; 8],
[u8; 10], [u8; 12], [u8; 14], [u8; 16], [u8; 20], [u8; 24], [u8; 28], [u8; 32], [u8; 40],
[u8; 48], [u8; 56], [u8; 64], [u8; 80], [u8; 96], [u8; 112], [u8; 128], bool);
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn vec_is_slicable() {
let v = b"Hello world".to_vec();
v.using_encoded(|ref slice|
);
}
#[test]
fn encode_borrowed_tuple() {
let x = vec![1u8, 2, 3, 4];
let y = 128i64;
let encoded = (&x, &y).encode();
assert_eq!((x, y), Decode::decode(&mut &encoded[..]).unwrap());
}
#[test]
fn cow_works() {
let x = &[1u32, 2, 3, 4, 5, 6][..];
let y = Cow::Borrowed(&x);
assert_eq!(x.encode(), y.encode());
let z: Cow<[u32]> = Cow::decode(&mut &x.encode()[..]).unwrap();
assert_eq!(*z, *x);
}
#[test]
fn cow_string_works() {
let x = "Hello world!";
let y = Cow::Borrowed(&x);
assert_eq!(x.encode(), y.encode());
let z: Cow<str> = Cow::decode(&mut &x.encode()[..]).unwrap();
assert_eq!(*z, *x);
}
fn compact_128_encoding_works() {
let tests = [
(0u128, 1usize), (63, 1), (64, 2), (16383, 2),
(16384, 4), (1073741823, 4),
Konstantin Yegupov
committed
(1073741824, 5), ((1 << 32) - 1, 5),
(1 << 32, 6), (1 << 40, 7), (1 << 48, 8), ((1 << 56) - 1, 8), (1 << 56, 9), ((1 << 64) - 1, 9),
(1 << 64, 10), (1 << 72, 11), (1 << 80, 12), (1 << 88, 13), (1 << 96, 14), (1 << 104, 15),
Konstantin Yegupov
committed
(1 << 112, 16), ((1 << 120) - 1, 16), (1 << 120, 17), (u128::max_value(), 17)
];
for &(n, l) in &tests {
let encoded = Compact(n as u128).encode();
assert_eq!(encoded.len(), l);
assert_eq!(<Compact<u128>>::decode(&mut &encoded[..]).unwrap().0, n);
}
}
#[test]
fn compact_64_encoding_works() {
let tests = [
(0u64, 1usize), (63, 1), (64, 2), (16383, 2),
(16384, 4), (1073741823, 4),
Konstantin Yegupov
committed
(1073741824, 5), ((1 << 32) - 1, 5),
(1 << 32, 6), (1 << 40, 7), (1 << 48, 8), ((1 << 56) - 1, 8), (1 << 56, 9), (u64::max_value(), 9)
];
for &(n, l) in &tests {
let encoded = Compact(n as u64).encode();
assert_eq!(encoded.len(), l);
assert_eq!(<Compact<u64>>::decode(&mut &encoded[..]).unwrap().0, n);
}
}
#[test]
fn compact_32_encoding_works() {
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
let tests = [(0u32, 1usize), (63, 1), (64, 2), (16383, 2), (16384, 4), (1073741823, 4), (1073741824, 5), (u32::max_value(), 5)];
for &(n, l) in &tests {
let encoded = Compact(n as u32).encode();
assert_eq!(encoded.len(), l);
assert_eq!(<Compact<u32>>::decode(&mut &encoded[..]).unwrap().0, n);
}
}
#[test]
fn compact_16_encoding_works() {
let tests = [(0u16, 1usize), (63, 1), (64, 2), (16383, 2), (16384, 4), (65535, 4)];
for &(n, l) in &tests {
let encoded = Compact(n as u16).encode();
assert_eq!(encoded.len(), l);
assert_eq!(<Compact<u16>>::decode(&mut &encoded[..]).unwrap().0, n);
}
assert!(<Compact<u16>>::decode(&mut &Compact(65536u32).encode()[..]).is_none());
}
#[test]
fn compact_8_encoding_works() {
let tests = [(0u8, 1usize), (63, 1), (64, 2), (255, 2)];
for &(n, l) in &tests {
let encoded = Compact(n as u8).encode();
assert_eq!(encoded.len(), l);
assert_eq!(<Compact<u8>>::decode(&mut &encoded[..]).unwrap().0, n);
}
assert!(<Compact<u8>>::decode(&mut &Compact(256u32).encode()[..]).is_none());
}
Konstantin Yegupov
committed
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
fn hexify(bytes: &Vec<u8>) -> String {
bytes.iter().map(|ref b| format!("{:02x}", b)).collect::<Vec<String>>().join(" ")
}
#[test]
fn vec_of_u8_encoded_as_expected() {
let value = vec![0u8, 1, 1, 2, 3, 5, 8, 13, 21, 34];
let encoded = value.encode();
assert_eq!(hexify(&encoded), "28 00 01 01 02 03 05 08 0d 15 22");
assert_eq!(<Vec<u8>>::decode(&mut &encoded[..]).unwrap(), value);
}
#[test]
fn vec_of_i16_encoded_as_expected() {
let value = vec![0i16, 1, -1, 2, -2, 3, -3];
let encoded = value.encode();
assert_eq!(hexify(&encoded), "1c 00 00 01 00 ff ff 02 00 fe ff 03 00 fd ff");
assert_eq!(<Vec<i16>>::decode(&mut &encoded[..]).unwrap(), value);
}
#[test]
fn vec_of_option_int_encoded_as_expected() {
let value = vec![Some(1i8), Some(-1), None];
let encoded = value.encode();
assert_eq!(hexify(&encoded), "0c 01 01 01 ff 00");