Newer
Older
// Copyright 2017, 2018 Parity Technologies
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::alloc::vec::Vec;
use crate::alloc::boxed::Box;
use crate::alloc::collections::btree_set::BTreeSet;
use crate::compact::{Compact, CompactLen};
#[cfg(any(feature = "std", feature = "full"))]
use crate::alloc::{
use core::{mem, slice, ops::Deref};
use core::marker::PhantomData;
#[cfg(feature = "std")]
use std::fmt;
#[cfg_attr(feature = "std", derive(Debug))]
#[derive(PartialEq)]
#[cfg(feature = "std")]
/// Descriptive error type
pub struct Error(&'static str);
#[cfg(not(feature = "std"))]
#[derive(PartialEq)]
pub struct Error;
impl Error {
#[cfg(feature = "std")]
/// Error description
///
/// This function returns an actual error str when running in `std`
/// environment, but `""` on `no_std`.
pub fn what(&self) -> &'static str {
self.0
}
#[cfg(not(feature = "std"))]
/// Error description
///
/// This function returns an actual error str when running in `std`
/// environment, but `""` on `no_std`.
pub fn what(&self) -> &'static str {
""
}
}
#[cfg(feature = "std")]
impl std::fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.0)
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {
fn description(&self) -> &str {
self.0
}
}
impl From<&'static str> for Error {
#[cfg(feature = "std")]
fn from(s: &'static str) -> Error {
}
#[cfg(not(feature = "std"))]
fn from(_s: &'static str) -> Error {
/// Trait that allows reading of data into a slice.
pub trait Input {
/// Read into the provided input slice. Returns the number of bytes read.
///
/// Note that this function should be more like `std::io::Read::read_exact`
/// than `std::io::Read::read`. I.e. the buffer should always be filled
/// with as many bytes as available and if `n < into.len()` is returned
/// then it should mean that there was not enough bytes available and the
/// `Input` is drained.
///
/// Callers of this function should not need to call again if `n < into.len()`
/// is returned.
fn read(&mut self, into: &mut [u8]) -> Result<usize, Error>;
fn read_byte(&mut self) -> Result<u8, Error> {
self.read(&mut buf[..])?;
Ok(buf[0])
}
}
#[cfg(not(feature = "std"))]
impl<'a> Input for &'a [u8] {
fn read(&mut self, into: &mut [u8]) -> Result<usize, Error> {
if into.len() > self.len() {
return Err("".into());
}
let len = core::cmp::min(into.len(), self.len());
into[..len].copy_from_slice(&self[..len]);
*self = &self[len..];
Ok(len)
}
}
#[cfg(feature = "std")]
impl From<std::io::Error> for Error {
fn from(_err: std::io::Error) -> Self {
"io error".into()
impl<R: std::io::Read> Input for R {
fn read(&mut self, into: &mut [u8]) -> Result<usize, Error> {
(self as &mut dyn std::io::Read).read_exact(into)?;
Ok(into.len())
}
}
/// Trait that allows writing of data.
pub trait Output: Sized {
/// Write to the output.
fn write(&mut self, bytes: &[u8]);
/// Write a single byte to the output.
fn push_byte(&mut self, byte: u8) {
self.write(&[byte]);
}
/// Write encoding of given value to the output.
fn push<V: Encode + ?Sized>(&mut self, value: &V) {
value.encode_to(self);
}
}
#[cfg(not(feature = "std"))]
impl Output for Vec<u8> {
fn write(&mut self, bytes: &[u8]) {
self.extend_from_slice(bytes)
impl<W: std::io::Write> Output for W {
(self as &mut dyn std::io::Write).write_all(bytes).expect("Codec outputs are infallible");
/// This enum must not be exported and must only be instantiable by parity-scale-codec.
/// Because implementation of Encode and Decode for u8 is done in this crate
/// and there is not other usage.
pub enum IsU8 {
Yes,
No,
}
/// Trait that allows zero-copy write of value-references to slices in LE format.
///
/// Implementations should override `using_encoded` for value types and `encode_to` and `size_hint` for allocating types.
/// Wrapper types should override all methods.
#[doc(hidden)]
// This const is used to optimise implementation of codec for Vec<u8>.
const IS_U8: IsU8 = IsU8::No;
/// If possible give a hint of expected size of the encoding.
///
/// This method is used inside default implementation of `encode`
/// to avoid re-allocations.
fn size_hint(&self) -> usize {
0
}
/// Convert self to a slice and append it to the destination.
fn encode_to<T: Output>(&self, dest: &mut T) {
self.using_encoded(|buf| dest.write(buf));
}
/// Convert self to an owned vector.
fn encode(&self) -> Vec<u8> {
let mut r = Vec::with_capacity(self.size_hint());
self.encode_to(&mut r);
r
}
/// Convert self to a slice and then invoke the given closure with it.
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&self.encode())
}
}
/// Trait that allows to append items to an encoded representation without
/// decoding all previous added items.
pub trait EncodeAppend {
/// The item that will be appended.
type Item: Encode;
/// Append `to_append` items to the given `self_encoded` representation.
fn append(self_encoded: Vec<u8>, to_append: &[Self::Item]) -> Result<Vec<u8>, Error>;
}
/// Trait that allows zero-copy read of value-references from slices in LE format.
pub trait Decode: Sized {
#[doc(hidden)]
const IS_U8: IsU8 = IsU8::No;
/// Attempt to deserialise the value from input.
fn decode<I: Input>(value: &mut I) -> Result<Self, Error>;
}
/// Trait that allows zero-copy read/write of value-references to/from slices in LE format.
pub trait Codec: Decode + Encode {}
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
impl<S: Decode + Encode> Codec for S {}
/// A marker trait for types that wrap other encodable type.
///
/// Such types should not carry any additional information
/// that would require to be encoded, because the encoding
/// is assumed to be the same as the wrapped type.
pub trait WrapperTypeEncode: Deref {}
impl<T> WrapperTypeEncode for Vec<T> {}
impl<T: ?Sized> WrapperTypeEncode for Box<T> {}
impl<'a, T: ?Sized> WrapperTypeEncode for &'a T {}
impl<'a, T: ?Sized> WrapperTypeEncode for &'a mut T {}
#[cfg(any(feature = "std", feature = "full"))]
impl<'a, T: ToOwned + ?Sized> WrapperTypeEncode for Cow<'a, T> {}
#[cfg(any(feature = "std", feature = "full"))]
impl<T: ?Sized> WrapperTypeEncode for std::sync::Arc<T> {}
#[cfg(any(feature = "std", feature = "full"))]
impl<T: ?Sized> WrapperTypeEncode for std::rc::Rc<T> {}
#[cfg(any(feature = "std", feature = "full"))]
impl WrapperTypeEncode for String {}
impl<T, X> Encode for X where
T: Encode + ?Sized,
X: WrapperTypeEncode<Target=T>,
{
fn size_hint(&self) -> usize {
(&**self).size_hint()
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
(&**self).using_encoded(f)
}
fn encode(&self) -> Vec<u8> {
(&**self).encode()
}
fn encode_to<W: Output>(&self, dest: &mut W) {
(&**self).encode_to(dest)
}
}
/// A marker trait for types that can be created solely from other decodable types.
///
/// The decoding of such type is assumed to be the same as the wrapped type.
pub trait WrapperTypeDecode: Sized {
/// A wrapped type.
type Wrapped: Into<Self>;
}
impl<T> WrapperTypeDecode for Box<T> {
type Wrapped = T;
}
#[cfg(any(feature = "std", feature = "full"))]
impl<T> WrapperTypeDecode for std::sync::Arc<T> {
type Wrapped = T;
}
#[cfg(any(feature = "std", feature = "full"))]
impl<T> WrapperTypeDecode for std::rc::Rc<T> {
type Wrapped = T;
}
impl<T, X> Decode for X where
T: Decode + Into<X>,
X: WrapperTypeDecode<Wrapped=T>,
{
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
Ok(T::decode(input)?.into())
}
}
/// Something that can be encoded as a reference.
pub trait EncodeAsRef<'a, T: 'a> {
/// The reference type that is used for encoding.
type RefType: Encode + From<&'a T>;
}
impl<T: Encode, E: Encode> Encode for Result<T, E> {
fn size_hint(&self) -> usize {
1 + match *self {
Ok(ref t) => t.size_hint(),
Err(ref t) => t.size_hint(),
}
}
fn encode_to<W: Output>(&self, dest: &mut W) {
match *self {
Ok(ref t) => {
dest.push_byte(0);
t.encode_to(dest);
}
Err(ref e) => {
dest.push_byte(1);
e.encode_to(dest);
}
}
}
}
impl<T: Decode, E: Decode> Decode for Result<T, E> {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
0 => Ok(Ok(T::decode(input)?)),
1 => Ok(Err(E::decode(input)?)),
_ => Err("unexpected first byte decoding Result".into()),
}
}
}
/// Shim type because we can't do a specialised implementation for `Option<bool>` directly.
impl core::fmt::Debug for OptionBool {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&[match *self {
OptionBool(None) => 0u8,
OptionBool(Some(true)) => 1u8,
OptionBool(Some(false)) => 2u8,
}])
}
}
impl Decode for OptionBool {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
0 => Ok(OptionBool(None)),
1 => Ok(OptionBool(Some(true))),
2 => Ok(OptionBool(Some(false))),
_ => Err("unexpected first byte decoding OptionBool".into()),
}
}
}
impl<T: Encode> Encode for Option<T> {
fn size_hint(&self) -> usize {
1 + match *self {
Some(ref t) => t.size_hint(),
None => 0,
}
}
fn encode_to<W: Output>(&self, dest: &mut W) {
match *self {
Some(ref t) => {
dest.push_byte(1);
t.encode_to(dest);
}
None => dest.push_byte(0),
}
}
}
impl<T: Decode> Decode for Option<T> {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
0 => Ok(None),
1 => Ok(Some(T::decode(input)?)),
_ => Err("unexpecded first byte decoding Option".into()),
( $( $n:expr, )* ) => { $(
impl<T: Encode> Encode for [T; $n] {
fn encode_to<W: Output>(&self, dest: &mut W) {
for item in self.iter() {
item.encode_to(dest);
}
}
}
impl<T: Decode> Decode for [T; $n] {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
let mut r = ArrayVec::new();
for _ in 0..$n {
r.push(T::decode(input)?);
}
let i = r.into_inner();
match i {
Ok(a) => Ok(a),
Err(_) => Err("failed to get inner array from ArrayVec".into()),
}
impl_array!(
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124,
125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140,
141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156,
157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172,
173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188,
189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204,
205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220,
221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236,
237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252,
253, 254, 255, 256, 384, 512, 768, 1024, 2048, 4096, 8192, 16384, 32768,
);
impl Encode for str {
fn size_hint(&self) -> usize {
self.as_bytes().size_hint()
}
fn encode_to<W: Output>(&self, dest: &mut W) {
self.as_bytes().encode_to(dest)
}
fn encode(&self) -> Vec<u8> {
self.as_bytes().encode()
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
self.as_bytes().using_encoded(f)
#[cfg(any(feature = "std", feature = "full"))]
impl<'a, T: ToOwned + ?Sized> Decode for Cow<'a, T>
where <T as ToOwned>::Owned: Decode,
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
Ok(Cow::Owned(Decode::decode(input)?))
impl<T> Encode for PhantomData<T> {
fn encode_to<W: Output>(&self, _dest: &mut W) {}
impl<T> Decode for PhantomData<T> {
fn decode<I: Input>(_input: &mut I) -> Result<Self, Error> {
Ok(PhantomData)
#[cfg(any(feature = "std", feature = "full"))]
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
Ok(Self::from_utf8_lossy(&Vec::decode(input)?).into())
}
}
impl<T: Encode> Encode for [T] {
fn size_hint(&self) -> usize {
if let IsU8::Yes = <T as Encode>::IS_U8 {
self.len() + mem::size_of::<u32>()
} else {
0
}
}
fn encode_to<W: Output>(&self, dest: &mut W) {
let len = self.len();
assert!(len <= u32::max_value() as usize, "Attempted to serialize a collection with too many elements.");
if let IsU8::Yes= <T as Encode>::IS_U8 {
let self_transmute = unsafe {
std::mem::transmute::<&[T], &[u8]>(self)
};
dest.write(self_transmute)
} else {
for item in self {
item.encode_to(dest);
}
}
}
}
impl<T: Decode> Decode for Vec<T> {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
<Compact<u32>>::decode(input).and_then(move |Compact(len)| {
let len = len as usize;
if let IsU8::Yes = <T as Decode>::IS_U8 {
let mut r = vec![0; len];
if input.read(&mut r[..len])? != len {
Err(Error::from("Input vector len doesn't match prefix specified"))
} else {
let r = unsafe { std::mem::transmute::<Vec<u8>, Vec<T>>(r) };
Ok(r)
}
} else {
let mut r = Vec::with_capacity(len);
for _ in 0..len {
r.push(T::decode(input)?);
}
Ok(r)
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
impl<T: Encode + Decode> EncodeAppend for Vec<T> {
type Item = T;
fn append(mut self_encoded: Vec<u8>, to_append: &[Self::Item]) -> Result<Vec<u8>, Error> {
if self_encoded.is_empty() {
return Ok(to_append.encode())
}
let len = u32::from(Compact::<u32>::decode(&mut &self_encoded[..])?);
let new_len = len
.checked_add(to_append.len() as u32)
.ok_or_else(|| "New vec length greater than `u32::max_value()`.")?;
let encoded_len = Compact::<u32>::compact_len(&len);
let encoded_new_len = Compact::<u32>::compact_len(&new_len);
let replace_len = |dest: &mut Vec<u8>| {
Compact(new_len).using_encoded(|e| {
dest[..encoded_new_len].copy_from_slice(e);
})
};
let append_new_elems = |dest: &mut Vec<u8>| to_append.iter().for_each(|a| a.encode_to(dest));
// If old and new encoded len is equal, we don't need to copy the
// already encoded data.
if encoded_len == encoded_new_len {
replace_len(&mut self_encoded);
append_new_elems(&mut self_encoded);
Ok(self_encoded)
} else {
let prefix_size = encoded_new_len + self_encoded.len() - encoded_len;
let size_hint: usize = to_append.iter().map(Encode::size_hint).sum();
let mut res = Vec::with_capacity(prefix_size + size_hint);
unsafe { res.set_len(prefix_size); }
// Insert the new encoded len, copy the already encoded data and
// add the new element.
replace_len(&mut res);
res[encoded_new_len..prefix_size].copy_from_slice(&self_encoded[encoded_len..]);
append_new_elems(&mut res);
Ok(res)
}
}
}
impl<K: Encode + Ord, V: Encode> Encode for BTreeMap<K, V> {
fn encode_to<W: Output>(&self, dest: &mut W) {
let len = self.len();
assert!(len <= u32::max_value() as usize, "Attempted to serialize a collection with too many elements.");
Compact(len as u32).encode_to(dest);
for i in self.iter() {
i.encode_to(dest);
}
}
}
impl<K: Decode + Ord, V: Decode> Decode for BTreeMap<K, V> {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
<Compact<u32>>::decode(input).and_then(move |Compact(len)| {
let mut r: BTreeMap<K, V> = BTreeMap::new();
for _ in 0..len {
let (key, v) = <(K, V)>::decode(input)?;
r.insert(key, v);
}
impl<T: Encode + Ord> Encode for BTreeSet<T> {
fn encode_to<W: Output>(&self, dest: &mut W) {
let len = self.len();
assert!(len <= u32::max_value() as usize, "Attempted to serialize a collection with too many elements.");
Compact(len as u32).encode_to(dest);
for i in self.iter() {
i.encode_to(dest);
}
}
}
impl<T: Decode + Ord> Decode for BTreeSet<T> {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
<Compact<u32>>::decode(input).and_then(move |Compact(len)| {
let mut r: BTreeSet<T> = BTreeSet::new();
for _ in 0..len {
let t = T::decode(input)?;
r.insert(t);
}
Ok(r)
})
}
}
fn encode_to<W: Output>(&self, _dest: &mut W) {
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&[])
}
fn encode(&self) -> Vec<u8> {
Vec::new()
}
}
impl Decode for () {
fn decode<I: Input>(_: &mut I) -> Result<(), Error> {
Ok(())
}
}
macro_rules! tuple_impl {
($one:ident,) => {
impl<$one: Encode> Encode for ($one,) {
fn size_hint(&self) -> usize {
self.0.size_hint()
}
fn encode_to<T: Output>(&self, dest: &mut T) {
self.0.encode_to(dest);
}
fn encode(&self) -> Vec<u8> {
self.0.encode()
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
self.0.using_encoded(f)
}
}
impl<$one: Decode> Decode for ($one,) {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
Err(e) => Err(e),
Ok($one) => Ok(($one,)),
}
}
}
};
($first:ident, $($rest:ident,)+) => {
impl<$first: Encode, $($rest: Encode),+>
Encode for
($first, $($rest),+) {
fn size_hint(&self) -> usize {
let (
ref $first,
$(ref $rest),+
) = *self;
$first.size_hint()
$( + $rest.size_hint() )+
}
fn encode_to<T: Output>(&self, dest: &mut T) {
let (
ref $first,
$(ref $rest),+
) = *self;
$first.encode_to(dest);
$($rest.encode_to(dest);)+
}
}
impl<$first: Decode, $($rest: Decode),+>
Decode for
($first, $($rest),+) {
fn decode<INPUT: Input>(input: &mut INPUT) -> Result<Self, super::Error> {
Ok((
Ok(x) => x,
Err(e) => return Err(e),
Ok(x) => x,
Err(e) => return Err(e),
},)+
))
}
}
tuple_impl!($($rest,)+);
}
}
#[allow(non_snake_case)]
mod inner_tuple_impl {
use super::{Error, Input, Output, Decode, Encode};
tuple_impl!(A, B, C, D, E, F, G, H, I, J, K,);
}
/// Trait to allow conversion to a know endian representation when sensitive.
/// Types implementing this trait must have a size > 0.
///
/// # Note
///
/// The copy bound and static lifetimes are necessary for safety of `Codec` blanket
/// implementation.
trait EndianSensitive: Copy + 'static {
fn to_le(self) -> Self { self }
fn to_be(self) -> Self { self }
fn from_le(self) -> Self { self }
fn from_be(self) -> Self { self }
fn as_be_then<T, F: FnOnce(&Self) -> T>(&self, f: F) -> T { f(&self) }
fn as_le_then<T, F: FnOnce(&Self) -> T>(&self, f: F) -> T { f(&self) }
}
macro_rules! impl_endians {
( $( $t:ty ),* ) => { $(
impl EndianSensitive for $t {
fn to_le(self) -> Self { <$t>::to_le(self) }
fn to_be(self) -> Self { <$t>::to_be(self) }
fn from_le(self) -> Self { <$t>::from_le(self) }
fn from_be(self) -> Self { <$t>::from_be(self) }
fn as_be_then<T, F: FnOnce(&Self) -> T>(&self, f: F) -> T { let d = self.to_be(); f(&d) }
fn as_le_then<T, F: FnOnce(&Self) -> T>(&self, f: F) -> T { let d = self.to_le(); f(&d) }
}
impl Encode for $t {
fn size_hint(&self) -> usize {
mem::size_of::<$t>()
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
self.as_le_then(|le| {
let size = mem::size_of::<$t>();
let value_slice = unsafe {
let ptr = le as *const _ as *const u8;
if size != 0 {
slice::from_raw_parts(ptr, size)
} else {
&[]
}
};
f(value_slice)
})
}
}
impl Decode for $t {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
let size = mem::size_of::<$t>();
assert!(size > 0, "EndianSensitive can never be implemented for a zero-sized type.");
let mut val: $t = unsafe { mem::zeroed() };
unsafe {
let raw: &mut [u8] = slice::from_raw_parts_mut(
&mut val as *mut $t as *mut u8,
size
);
}
}
)* }
}
macro_rules! impl_non_endians {
( $( $t:ty $( { $is_u8:ident } )? ),* ) => { $(
impl EndianSensitive for $t {}
impl Encode for $t {
$( const $is_u8: IsU8 = IsU8::Yes; )?
fn size_hint(&self) -> usize {
mem::size_of::<$t>()
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
self.as_le_then(|le| {
let size = mem::size_of::<$t>();
let value_slice = unsafe {
let ptr = le as *const _ as *const u8;
if size != 0 {
slice::from_raw_parts(ptr, size)
} else {
&[]
}
};
f(value_slice)
})
}
}
impl Decode for $t {
$( const $is_u8: IsU8 = IsU8::Yes; )?
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
let size = mem::size_of::<$t>();
assert!(size > 0, "EndianSensitive can never be implemented for a zero-sized type.");
let mut val: $t = unsafe { mem::zeroed() };
unsafe {
let raw: &mut [u8] = slice::from_raw_parts_mut(
&mut val as *mut $t as *mut u8,
size
);
impl_endians!(u16, u32, u64, u128, i16, i32, i64, i128);
impl_non_endians!(u8 {IS_U8}, i8, bool);
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn vec_is_slicable() {
let v = b"Hello world".to_vec();
v.using_encoded(|ref slice|
#[test]
fn btree_map_works() {
let mut m: BTreeMap<u32, Vec<u8>> = BTreeMap::new();
m.insert(1, b"qwe".to_vec());
m.insert(2, b"qweasd".to_vec());
let encoded = m.encode();
assert_eq!(m, Decode::decode(&mut &encoded[..]).unwrap());
let mut m: BTreeMap<Vec<u8>, Vec<u8>> = BTreeMap::new();
m.insert(b"123".to_vec(), b"qwe".to_vec());
m.insert(b"1234".to_vec(), b"qweasd".to_vec());
let encoded = m.encode();
assert_eq!(m, Decode::decode(&mut &encoded[..]).unwrap());
let mut m: BTreeMap<Vec<u32>, Vec<u8>> = BTreeMap::new();
m.insert(vec![1, 2, 3], b"qwe".to_vec());
m.insert(vec![1, 2], b"qweasd".to_vec());
let encoded = m.encode();
assert_eq!(m, Decode::decode(&mut &encoded[..]).unwrap());
}
#[test]
fn btree_set_works() {
let mut m: BTreeSet<u32> = BTreeSet::new();
m.insert(1);
m.insert(2);
let encoded = m.encode();
assert_eq!(m, Decode::decode(&mut &encoded[..]).unwrap());
let mut m: BTreeSet<Vec<u8>> = BTreeSet::new();
m.insert(b"123".to_vec());
m.insert(b"1234".to_vec());
let encoded = m.encode();
assert_eq!(m, Decode::decode(&mut &encoded[..]).unwrap());
let mut m: BTreeSet<Vec<u32>> = BTreeSet::new();
m.insert(vec![1, 2, 3]);
m.insert(vec![1, 2]);
let encoded = m.encode();
assert_eq!(m, Decode::decode(&mut &encoded[..]).unwrap());
}
#[test]
fn encode_borrowed_tuple() {
let x = vec![1u8, 2, 3, 4];
let y = 128i64;
let encoded = (&x, &y).encode();
assert_eq!((x, y), Decode::decode(&mut &encoded[..]).unwrap());
}
#[test]
fn cow_works() {
let x = &[1u32, 2, 3, 4, 5, 6][..];
let y = Cow::Borrowed(&x);
assert_eq!(x.encode(), y.encode());
let z: Cow<'_, [u32]> = Cow::decode(&mut &x.encode()[..]).unwrap();
assert_eq!(*z, *x);
}
#[test]
fn cow_string_works() {
let x = "Hello world!";
let y = Cow::Borrowed(&x);
assert_eq!(x.encode(), y.encode());
let z: Cow<'_, str> = Cow::decode(&mut &x.encode()[..]).unwrap();
fn hexify(bytes: &[u8]) -> String {
Konstantin Yegupov
committed
bytes.iter().map(|ref b| format!("{:02x}", b)).collect::<Vec<String>>().join(" ")
}
#[test]
fn string_encoded_as_expected() {
let value = String::from("Hello, World!");
let encoded = value.encode();
assert_eq!(hexify(&encoded), "34 48 65 6c 6c 6f 2c 20 57 6f 72 6c 64 21");
assert_eq!(<String>::decode(&mut &encoded[..]).unwrap(), value);
}
Konstantin Yegupov
committed
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#[test]
fn vec_of_u8_encoded_as_expected() {
let value = vec![0u8, 1, 1, 2, 3, 5, 8, 13, 21, 34];
let encoded = value.encode();
assert_eq!(hexify(&encoded), "28 00 01 01 02 03 05 08 0d 15 22");
assert_eq!(<Vec<u8>>::decode(&mut &encoded[..]).unwrap(), value);
}
#[test]
fn vec_of_i16_encoded_as_expected() {
let value = vec![0i16, 1, -1, 2, -2, 3, -3];
let encoded = value.encode();
assert_eq!(hexify(&encoded), "1c 00 00 01 00 ff ff 02 00 fe ff 03 00 fd ff");
assert_eq!(<Vec<i16>>::decode(&mut &encoded[..]).unwrap(), value);
}
#[test]
fn vec_of_option_int_encoded_as_expected() {
let value = vec![Some(1i8), Some(-1), None];
let encoded = value.encode();
assert_eq!(hexify(&encoded), "0c 01 01 01 ff 00");
assert_eq!(<Vec<Option<i8>>>::decode(&mut &encoded[..]).unwrap(), value);
}
#[test]
fn vec_of_option_bool_encoded_as_expected() {
let value = vec![OptionBool(Some(true)), OptionBool(Some(false)), OptionBool(None)];
let encoded = value.encode();
assert_eq!(hexify(&encoded), "0c 01 02 00");
assert_eq!(<Vec<OptionBool>>::decode(&mut &encoded[..]).unwrap(), value);
}