Newer
Older
// Copyright 2017, 2018 Parity Technologies
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::alloc::vec::Vec;
use crate::alloc::boxed::Box;
#[cfg(any(feature = "std", feature = "full"))]
use crate::alloc::{
string::String,
borrow::{Cow, ToOwned},
};
use core::{mem, slice};
use arrayvec::ArrayVec;
use core::marker::PhantomData;
/// Trait that allows reading of data into a slice.
pub trait Input {
/// Read into the provided input slice. Returns the number of bytes read.
fn read(&mut self, into: &mut [u8]) -> usize;
/// Read a single byte from the input.
fn read_byte(&mut self) -> Option<u8> {
let mut buf = [0u8];
match self.read(&mut buf[..]) {
0 => None,
1 => Some(buf[0]),
_ => unreachable!(),
}
}
}
#[cfg(not(feature = "std"))]
impl<'a> Input for &'a [u8] {
fn read(&mut self, into: &mut [u8]) -> usize {
let len = ::core::cmp::min(into.len(), self.len());
into[..len].copy_from_slice(&self[..len]);
*self = &self[len..];
len
}
}
#[cfg(feature = "std")]
impl<R: std::io::Read> Input for R {
match (self as &mut dyn std::io::Read).read_exact(into) {
Ok(()) => into.len(),
Err(_) => 0,
}
}
}
struct PrefixInput<'a, T> {
prefix: Option<u8>,
input: &'a mut T,
}
impl<'a, T: 'a + Input> Input for PrefixInput<'a, T> {
fn read(&mut self, buffer: &mut [u8]) -> usize {
match self.prefix.take() {
Some(v) if buffer.len() > 0 => {
buffer[0] = v;
1 + self.input.read(&mut buffer[1..])
}
_ => self.input.read(buffer)
}
}
}
/// Trait that allows writing of data.
pub trait Output: Sized {
/// Write to the output.
fn write(&mut self, bytes: &[u8]);
fn push_byte(&mut self, byte: u8) {
self.write(&[byte]);
}
fn push<V: Encode + ?Sized>(&mut self, value: &V) {
value.encode_to(self);
}
}
#[cfg(not(feature = "std"))]
impl Output for Vec<u8> {
fn write(&mut self, bytes: &[u8]) {
self.extend(bytes);
}
}
#[cfg(feature = "std")]
impl<W: std::io::Write> Output for W {
(self as &mut dyn std::io::Write).write_all(bytes).expect("Codec outputs are infallible");
struct ArrayVecWrapper<T: arrayvec::Array>(ArrayVec<T>);
impl<T: arrayvec::Array<Item=u8>> Output for ArrayVecWrapper<T> {
fn write(&mut self, bytes: &[u8]) {
for byte in bytes {
self.push_byte(*byte);
}
}
fn push_byte(&mut self, byte: u8) {
self.0.push(byte);
}
}
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/// Trait that allows zero-copy write of value-references to slices in LE format.
/// Implementations should override `using_encoded` for value types and `encode_to` for allocating types.
pub trait Encode {
/// Convert self to a slice and append it to the destination.
fn encode_to<T: Output>(&self, dest: &mut T) {
self.using_encoded(|buf| dest.write(buf));
}
/// Convert self to an owned vector.
fn encode(&self) -> Vec<u8> {
let mut r = Vec::new();
self.encode_to(&mut r);
r
}
/// Convert self to a slice and then invoke the given closure with it.
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&self.encode())
}
}
/// Trait that allows zero-copy read of value-references from slices in LE format.
pub trait Decode: Sized {
/// Attempt to deserialise the value from input.
fn decode<I: Input>(value: &mut I) -> Option<Self>;
}
/// Trait that allows zero-copy read/write of value-references to/from slices in LE format.
pub trait Codec: Decode + Encode {}
/// Compact-encoded variant of T. This is more space-efficient but less compute-efficient.
#[derive(Eq, PartialEq, Clone, Copy, Ord, PartialOrd)]
impl<T> From<T> for Compact<T> {
fn from(x: T) -> Compact<T> { Compact(x) }
}
impl<'a, T: Copy> From<&'a T> for Compact<T> {
fn from(x: &'a T) -> Compact<T> { Compact(*x) }
}
/// Allow foreign structs to be wrap in Compact
type As;
fn encode_as(&self) -> &Self::As;
fn decode_from(_: Self::As) -> Self;
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
}
impl<T> Encode for Compact<T>
where
T: CompactAs,
for<'a> CompactRef<'a, <T as CompactAs>::As>: Encode,
{
fn encode_to<W: Output>(&self, dest: &mut W) {
CompactRef(self.0.encode_as()).encode_to(dest)
}
}
impl<'a, T> Encode for CompactRef<'a, T>
where
T: CompactAs,
for<'b> CompactRef<'b, <T as CompactAs>::As>: Encode,
{
fn encode_to<Out: Output>(&self, dest: &mut Out) {
CompactRef(self.0.encode_as()).encode_to(dest)
}
}
impl<T> Decode for Compact<T>
where
T: CompactAs,
Compact<<T as CompactAs>::As>: Decode,
{
fn decode<I: Input>(input: &mut I) -> Option<Self> {
Compact::<T::As>::decode(input)
.map(|x| Compact(<T as CompactAs>::decode_from(x.0)))
}
}
macro_rules! impl_from_compact {
( $( $ty:ty ),* ) => {
$(
impl From<Compact<$ty>> for $ty {
fn from(x: Compact<$ty>) -> $ty { x.0 }
}
)*
}
impl_from_compact! { (), u8, u16, u32, u64, u128 }
/// Compact-encoded variant of &'a T. This is more space-efficient but less compute-efficient.
#[derive(Eq, PartialEq, Clone, Copy)]
pub struct CompactRef<'a, T>(pub &'a T);
impl<'a, T> From<&'a T> for CompactRef<'a, T> {
fn from(x: &'a T) -> Self { CompactRef(x) }
}
impl<T> ::core::fmt::Debug for Compact<T> where T: ::core::fmt::Debug {
fn fmt(&self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result {
impl<T> serde::Serialize for Compact<T> where T: serde::Serialize {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: serde::Serializer {
T::serialize(&self.0, serializer)
}
}
#[cfg(feature = "std")]
impl<'de, T> serde::Deserialize<'de> for Compact<T> where T: serde::Deserialize<'de> {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: serde::Deserializer<'de> {
pub trait MaybeDebugSerde: core::fmt::Debug + serde::Serialize + for<'a> serde::Deserialize<'a> {}
impl<T> MaybeDebugSerde for T where T: core::fmt::Debug + serde::Serialize + for<'a> serde::Deserialize<'a> {}
#[cfg(not(feature = "std"))]
pub trait MaybeDebugSerde {}
#[cfg(not(feature = "std"))]
impl<T> MaybeDebugSerde for T {}
/// Trait that tells you if a given type can be encoded/decoded in a compact way.
/// The compact type; this can be
type Type: for<'a> EncodeAsRef<'a, Self> + Decode + From<Self> + Into<Self> + Clone +
PartialEq + Eq + MaybeDebugSerde;
/// Something that can be encoded as a reference.
pub trait EncodeAsRef<'a, T: 'a> {
/// The reference type that is used for encoding.
type RefType: Encode + From<&'a T>;
}
impl<'a, T: 'a> EncodeAsRef<'a, T> for Compact<T> where CompactRef<'a, T>: Encode + From<&'a T> {
type RefType = CompactRef<'a, T>;
}
impl<T: 'static> HasCompact for T where
Compact<T>: for<'a> EncodeAsRef<'a, T> + Decode + From<Self> + Into<Self> + Clone +
PartialEq + Eq + MaybeDebugSerde,
type Type = Compact<T>;
}
// compact encoding:
// 0b00 00 00 00 / 00 00 00 00 / 00 00 00 00 / 00 00 00 00
// xx xx xx 00 (0 .. 2**6) (u8)
// yL yL yL 01 / yH yH yH yL (2**6 .. 2**14) (u8, u16) low LH high
// zL zL zL 10 / zM zM zM zL / zM zM zM zM / zH zH zH zM (2**14 .. 2**30) (u16, u32) low LMMH high
// nn nn nn 11 [ / zz zz zz zz ]{4 + n} (2**30 .. 2**536) (u32, u64, u128, U256, U512, U520) straight LE-encoded
// Note: we use *LOW BITS* of the LSB in LE encoding to encode the 2 bit key.
impl<'a> Encode for CompactRef<'a, ()> {
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&[])
}
}
impl Encode for Compact<()> {
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&[])
}
}
impl<'a> Encode for CompactRef<'a, u8> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match self.0 {
0..=0b00111111 => dest.push_byte(self.0 << 2),
_ => (((*self.0 as u16) << 2) | 0b01).encode_to(dest),
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
let mut r = ArrayVecWrapper(ArrayVec::<[u8; 2]>::new());
self.encode_to(&mut r);
f(&r.0)
}
impl Encode for Compact<u8> {
fn encode_to<W: Output>(&self, dest: &mut W) {
CompactRef(&self.0).encode_to(dest)
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
let mut r = ArrayVecWrapper(ArrayVec::<[u8; 2]>::new());
self.encode_to(&mut r);
f(&r.0)
}
}
impl<'a> Encode for CompactRef<'a, u16> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match self.0 {
0..=0b00111111 => dest.push_byte((*self.0 as u8) << 2),
0..=0b00111111_11111111 => ((*self.0 << 2) | 0b01).encode_to(dest),
_ => (((*self.0 as u32) << 2) | 0b10).encode_to(dest),
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
let mut r = ArrayVecWrapper(ArrayVec::<[u8; 4]>::new());
self.encode_to(&mut r);
f(&r.0)
}
impl Encode for Compact<u16> {
fn encode_to<W: Output>(&self, dest: &mut W) {
CompactRef(&self.0).encode_to(dest)
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
let mut r = ArrayVecWrapper(ArrayVec::<[u8; 4]>::new());
self.encode_to(&mut r);
f(&r.0)
}
}
impl<'a> Encode for CompactRef<'a, u32> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match self.0 {
0..=0b00111111 => dest.push_byte((*self.0 as u8) << 2),
0..=0b00111111_11111111 => (((*self.0 as u16) << 2) | 0b01).encode_to(dest),
0..=0b00111111_11111111_11111111_11111111 => ((*self.0 << 2) | 0b10).encode_to(dest),
_ => {
dest.push_byte(0b11);
self.0.encode_to(dest);
}
}
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
let mut r = ArrayVecWrapper(ArrayVec::<[u8; 5]>::new());
self.encode_to(&mut r);
f(&r.0)
}
impl Encode for Compact<u32> {
fn encode_to<W: Output>(&self, dest: &mut W) {
CompactRef(&self.0).encode_to(dest)
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
let mut r = ArrayVecWrapper(ArrayVec::<[u8; 5]>::new());
self.encode_to(&mut r);
f(&r.0)
}
}
impl<'a> Encode for CompactRef<'a, u64> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match self.0 {
0..=0b00111111 => dest.push_byte((*self.0 as u8) << 2),
0..=0b00111111_11111111 => (((*self.0 as u16) << 2) | 0b01).encode_to(dest),
0..=0b00111111_11111111_11111111_11111111 => (((*self.0 as u32) << 2) | 0b10).encode_to(dest),
let bytes_needed = 8 - self.0.leading_zeros() / 8;
assert!(bytes_needed >= 4, "Previous match arm matches anyting less than 2^30; qed");
dest.push_byte(0b11 + ((bytes_needed - 4) << 2) as u8);
let mut v = *self.0;
for _ in 0..bytes_needed {
dest.push_byte(v as u8);
v >>= 8;
}
assert_eq!(v, 0, "shifted sufficient bits right to lead only leading zeros; qed")
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
let mut r = ArrayVecWrapper(ArrayVec::<[u8; 9]>::new());
self.encode_to(&mut r);
f(&r.0)
}
impl Encode for Compact<u64> {
fn encode_to<W: Output>(&self, dest: &mut W) {
CompactRef(&self.0).encode_to(dest)
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
let mut r = ArrayVecWrapper(ArrayVec::<[u8; 9]>::new());
self.encode_to(&mut r);
f(&r.0)
}
}
impl<'a> Encode for CompactRef<'a, u128> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match self.0 {
0..=0b00111111 => dest.push_byte((*self.0 as u8) << 2),
0..=0b00111111_11111111 => (((*self.0 as u16) << 2) | 0b01).encode_to(dest),
0..=0b00111111_11111111_11111111_11111111 => (((*self.0 as u32) << 2) | 0b10).encode_to(dest),
let bytes_needed = 16 - self.0.leading_zeros() / 8;
assert!(bytes_needed >= 4, "Previous match arm matches anyting less than 2^30; qed");
dest.push_byte(0b11 + ((bytes_needed - 4) << 2) as u8);
let mut v = *self.0;
for _ in 0..bytes_needed {
dest.push_byte(v as u8);
v >>= 8;
}
assert_eq!(v, 0, "shifted sufficient bits right to lead only leading zeros; qed")
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
let mut r = ArrayVecWrapper(ArrayVec::<[u8; 17]>::new());
self.encode_to(&mut r);
f(&r.0)
}
impl Encode for Compact<u128> {
fn encode_to<W: Output>(&self, dest: &mut W) {
CompactRef(&self.0).encode_to(dest)
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
let mut r = ArrayVecWrapper(ArrayVec::<[u8; 17]>::new());
self.encode_to(&mut r);
f(&r.0)
}
impl Decode for Compact<()> {
fn decode<I: Input>(_input: &mut I) -> Option<Self> {
Some(Compact(()))
}
}
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
impl Decode for Compact<u8> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let prefix = input.read_byte()?;
Some(Compact(match prefix % 4 {
0 => prefix as u8 >> 2,
1 => {
let x = u16::decode(&mut PrefixInput{prefix: Some(prefix), input})? >> 2;
if x < 256 {
x as u8
} else {
return None
}
}
_ => return None,
}))
}
}
impl Decode for Compact<u16> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let prefix = input.read_byte()?;
Some(Compact(match prefix % 4 {
0 => prefix as u16 >> 2,
1 => u16::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u16 >> 2,
2 => {
let x = u32::decode(&mut PrefixInput{prefix: Some(prefix), input})? >> 2;
if x < 65536 {
x as u16
} else {
return None
}
}
_ => return None,
}))
}
}
impl Decode for Compact<u32> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let prefix = input.read_byte()?;
Some(Compact(match prefix % 4 {
0 => prefix as u32 >> 2,
1 => u16::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u32 >> 2,
2 => u32::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u32 >> 2,
3|_ => { // |_. yeah, i know.
if prefix >> 2 == 0 {
// just 4 bytes. ok.
u32::decode(input)?
} else {
// Out of range for a 32-bit quantity.
return None
}
}
}))
}
}
impl Decode for Compact<u64> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let prefix = input.read_byte()?;
Some(Compact(match prefix % 4 {
0 => prefix as u64 >> 2,
1 => u16::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u64 >> 2,
2 => u32::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u64 >> 2,
3|_ => match (prefix >> 2) + 4 {
4 => u32::decode(input)? as u64,
8 => u64::decode(input)?,
x if x > 8 => return None,
bytes_needed => {
let mut res = 0;
for i in 0..bytes_needed {
res |= (input.read_byte()? as u64) << (i * 8);
}
res
}
}
}))
}
}
impl Decode for Compact<u128> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let prefix = input.read_byte()?;
Some(Compact(match prefix % 4 {
0 => prefix as u128 >> 2,
1 => u16::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u128 >> 2,
2 => u32::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u128 >> 2,
3|_ => match (prefix >> 2) + 4 {
4 => u32::decode(input)? as u128,
8 => u64::decode(input)? as u128,
16 => u128::decode(input)?,
x if x > 16 => return None,
bytes_needed => {
let mut res = 0;
for i in 0..bytes_needed {
res |= (input.read_byte()? as u128) << (i * 8);
}
res
}
}
}))
}
}
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
impl<S: Decode + Encode> Codec for S {}
impl<T: Encode, E: Encode> Encode for Result<T, E> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match *self {
Ok(ref t) => {
dest.push_byte(0);
t.encode_to(dest);
}
Err(ref e) => {
dest.push_byte(1);
e.encode_to(dest);
}
}
}
}
impl<T: Decode, E: Decode> Decode for Result<T, E> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
match input.read_byte()? {
0 => Some(Ok(T::decode(input)?)),
1 => Some(Err(E::decode(input)?)),
_ => None,
}
}
}
/// Shim type because we can't do a specialised implementation for `Option<bool>` directly.
impl core::fmt::Debug for OptionBool {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
impl Encode for OptionBool {
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&[match *self {
OptionBool(None) => 0u8,
OptionBool(Some(true)) => 1u8,
OptionBool(Some(false)) => 2u8,
}])
}
}
impl Decode for OptionBool {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
match input.read_byte()? {
0 => Some(OptionBool(None)),
1 => Some(OptionBool(Some(true))),
2 => Some(OptionBool(Some(false))),
_ => None,
}
}
}
impl<T: Encode> Encode for Option<T> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match *self {
Some(ref t) => {
dest.push_byte(1);
t.encode_to(dest);
}
None => dest.push_byte(0),
}
}
}
impl<T: Decode> Decode for Option<T> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
match input.read_byte()? {
0 => Some(None),
1 => Some(Some(T::decode(input)?)),
_ => None,
}
}
}
macro_rules! impl_array {
( $( $n:expr )* ) => { $(
impl<T: Encode> Encode for [T; $n] {
fn encode_to<W: Output>(&self, dest: &mut W) {
for item in self.iter() {
item.encode_to(dest);
}
}
}
impl<T: Decode> Decode for [T; $n] {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let mut r = ArrayVec::new();
for _ in 0..$n {
r.push(T::decode(input)?);
}
r.into_inner().ok()
}
}
)* }
}
impl_array!(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
40 48 56 64 72 96 128 160 192 224 256);
impl<T: Encode> Encode for Box<T> {
fn encode_to<W: Output>(&self, dest: &mut W) {
self.as_ref().encode_to(dest)
}
}
impl<T: Decode> Decode for Box<T> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
Some(Box::new(T::decode(input)?))
}
}
impl Encode for [u8] {
fn encode_to<W: Output>(&self, dest: &mut W) {
let len = self.len();
assert!(len <= u32::max_value() as usize, "Attempted to serialize a collection with too many elements.");
dest.write(self)
}
}
impl Encode for Vec<u8> {
fn encode_to<W: Output>(&self, dest: &mut W) {
self.as_slice().encode_to(dest)
}
}
impl Decode for Vec<u8> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
<Compact<u32>>::decode(input).and_then(move |Compact(len)| {
let len = len as usize;
let mut vec = vec![0; len];
if input.read(&mut vec[..len]) != len {
None
} else {
Some(vec)
}
})
}
}
impl<'a> Encode for &'a str {
fn encode_to<W: Output>(&self, dest: &mut W) {
self.as_bytes().encode_to(dest)
}
}
#[cfg(any(feature = "std", feature = "full"))]
impl<'a, T: ToOwned + ?Sized + 'a> Encode for Cow<'a, T> where
Cow::Owned(ref x) => x.encode_to(dest),
Cow::Borrowed(x) => x.encode_to(dest),
#[cfg(any(feature = "std", feature = "full"))]
impl<'a, T: ToOwned + ?Sized> Decode for Cow<'a, T> where
fn decode<I: Input>(input: &mut I) -> Option<Self> {
Some(Cow::Owned(Decode::decode(input)?))
impl<T> Encode for PhantomData<T> {
impl<T> Decode for PhantomData<T> {
Some(PhantomData)
#[cfg(any(feature = "std", feature = "full"))]
impl Encode for String {
fn encode_to<W: Output>(&self, dest: &mut W) {
self.as_bytes().encode_to(dest)
}
}
#[cfg(any(feature = "std", feature = "full"))]
impl Decode for String {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
Some(Self::from_utf8_lossy(&Vec::decode(input)?).into())
}
}
impl<T: Encode> Encode for [T] {
fn encode_to<W: Output>(&self, dest: &mut W) {
let len = self.len();
assert!(len <= u32::max_value() as usize, "Attempted to serialize a collection with too many elements.");
for item in self {
item.encode_to(dest);
}
}
}
impl<T: Encode> Encode for Vec<T> {
fn encode_to<W: Output>(&self, dest: &mut W) {
self.as_slice().encode_to(dest)
}
}
impl<T: Decode> Decode for Vec<T> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
<Compact<u32>>::decode(input).and_then(move |Compact(len)| {
let mut r = Vec::with_capacity(len as usize);
for _ in 0..len {
r.push(T::decode(input)?);
}
Some(r)
})
}
}
impl<K: Encode + Ord, V: Encode> Encode for BTreeMap<K, V> {
fn encode_to<W: Output>(&self, dest: &mut W) {
let len = self.len();
assert!(len <= u32::max_value() as usize, "Attempted to serialize a collection with too many elements.");
(len as u32).encode_to(dest);
for i in self.iter() {
i.encode_to(dest);
}
}
}
impl<K: Decode + Ord, V: Decode> Decode for BTreeMap<K, V> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
u32::decode(input).and_then(move |len| {
let mut r: BTreeMap<K, V> = BTreeMap::new();
for _ in 0..len {
let (key, v) = <(K, V)>::decode(input)?;
r.insert(key, v);
}
Some(r)
})
}
}
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
impl Encode for () {
fn encode_to<T: Output>(&self, _dest: &mut T) {
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&[])
}
fn encode(&self) -> Vec<u8> {
Vec::new()
}
}
impl<'a, T: 'a + Encode + ?Sized> Encode for &'a T {
fn encode_to<D: Output>(&self, dest: &mut D) {
(&**self).encode_to(dest)
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
(&**self).using_encoded(f)
}
fn encode(&self) -> Vec<u8> {
(&**self).encode()
}
}
impl Decode for () {
fn decode<I: Input>(_: &mut I) -> Option<()> {
Some(())
}
}
macro_rules! tuple_impl {
($one:ident,) => {
impl<$one: Encode> Encode for ($one,) {
fn encode_to<T: Output>(&self, dest: &mut T) {
self.0.encode_to(dest);
}
}
impl<$one: Decode> Decode for ($one,) {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
match $one::decode(input) {
None => None,
Some($one) => Some(($one,)),
}
}
}
};
($first:ident, $($rest:ident,)+) => {
impl<$first: Encode, $($rest: Encode),+>
Encode for
($first, $($rest),+) {
fn encode_to<T: Output>(&self, dest: &mut T) {
let (
ref $first,
$(ref $rest),+
) = *self;
$first.encode_to(dest);
$($rest.encode_to(dest);)+
}
}
impl<$first: Decode, $($rest: Decode),+>
Decode for
($first, $($rest),+) {
fn decode<INPUT: Input>(input: &mut INPUT) -> Option<Self> {
Some((
match $first::decode(input) {
Some(x) => x,
None => return None,
},
$(match $rest::decode(input) {
Some(x) => x,
None => return None,
},)+
))
}
}
tuple_impl!($($rest,)+);
}
}
#[allow(non_snake_case)]
mod inner_tuple_impl {
use super::{Input, Output, Decode, Encode};
tuple_impl!(A, B, C, D, E, F, G, H, I, J, K,);
}
/// Trait to allow conversion to a know endian representation when sensitive.
/// Types implementing this trait must have a size > 0.
// note: the copy bound and static lifetimes are necessary for safety of `Codec` blanket
// implementation.
trait EndianSensitive: Copy + 'static {
fn to_le(self) -> Self { self }
fn to_be(self) -> Self { self }
fn from_le(self) -> Self { self }
fn from_be(self) -> Self { self }
fn as_be_then<T, F: FnOnce(&Self) -> T>(&self, f: F) -> T { f(&self) }
fn as_le_then<T, F: FnOnce(&Self) -> T>(&self, f: F) -> T { f(&self) }
}
macro_rules! impl_endians {
( $( $t:ty ),* ) => { $(
impl EndianSensitive for $t {
fn to_le(self) -> Self { <$t>::to_le(self) }
fn to_be(self) -> Self { <$t>::to_be(self) }
fn from_le(self) -> Self { <$t>::from_le(self) }
fn from_be(self) -> Self { <$t>::from_be(self) }
fn as_be_then<T, F: FnOnce(&Self) -> T>(&self, f: F) -> T { let d = self.to_be(); f(&d) }
fn as_le_then<T, F: FnOnce(&Self) -> T>(&self, f: F) -> T { let d = self.to_le(); f(&d) }
}
impl Encode for $t {
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
self.as_le_then(|le| {
let size = mem::size_of::<$t>();
let value_slice = unsafe {
let ptr = le as *const _ as *const u8;
if size != 0 {
slice::from_raw_parts(ptr, size)
} else {
&[]
}
};
f(value_slice)
})
}
}
impl Decode for $t {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let size = mem::size_of::<$t>();
assert!(size > 0, "EndianSensitive can never be implemented for a zero-sized type.");
let mut val: $t = unsafe { mem::zeroed() };
unsafe {
let raw: &mut [u8] = slice::from_raw_parts_mut(
&mut val as *mut $t as *mut u8,
size
);
if input.read(raw) != size { return None }
}
Some(val.from_le())
}
}
)* }
}
macro_rules! impl_non_endians {
( $( $t:ty ),* ) => { $(
impl EndianSensitive for $t {}
impl Encode for $t {
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
self.as_le_then(|le| {
let size = mem::size_of::<$t>();
let value_slice = unsafe {
let ptr = le as *const _ as *const u8;
if size != 0 {
slice::from_raw_parts(ptr, size)
} else {
&[]
}
};
f(value_slice)
})
}