Newer
Older
// Copyright 2017-2018 Parity Technologies
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::{
Compact, EncodeLike,
alloc::{
vec::Vec, boxed::Box, collections::{BTreeMap, BTreeSet, VecDeque, LinkedList, BinaryHeap},
}
};
#[cfg(any(feature = "std", feature = "full"))]
use crate::alloc::{
borrow::{Cow, ToOwned},
sync::Arc,
rc::Rc,
use core::{mem, slice, ops::Deref, marker::PhantomData, iter::FromIterator};
#[cfg(feature = "std")]
use std::fmt;
/// Descriptive error type
#[cfg(feature = "std")]
pub struct Error(&'static str);
/// Undescriptive error type when compiled for no std
#[cfg(not(feature = "std"))]
pub struct Error;
impl Error {
#[cfg(feature = "std")]
/// Error description
///
/// This function returns an actual error str when running in `std`
/// environment, but `""` on `no_std`.
pub fn what(&self) -> &'static str {
self.0
}
#[cfg(not(feature = "std"))]
/// Error description
///
/// This function returns an actual error str when running in `std`
/// environment, but `""` on `no_std`.
pub fn what(&self) -> &'static str {
""
}
}
#[cfg(feature = "std")]
impl std::fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.0)
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {
fn description(&self) -> &str {
self.0
}
}
impl From<&'static str> for Error {
#[cfg(feature = "std")]
fn from(s: &'static str) -> Error {
}
#[cfg(not(feature = "std"))]
fn from(_s: &'static str) -> Error {
/// Trait that allows reading of data into a slice.
pub trait Input {
/// Return remaining length of input.
fn remaining_len(&mut self) -> Result<usize, Error>;
/// Read the exact number of bytes required to fill the given buffer.
/// Note that this function is similar to `std::io::Read::read_exact` and not
/// `std::io::Read::read`.
fn read(&mut self, into: &mut [u8]) -> Result<(), Error>;
fn read_byte(&mut self) -> Result<u8, Error> {
self.read(&mut buf[..])?;
Ok(buf[0])
fn remaining_len(&mut self) -> Result<usize, Error> {
Ok(self.len())
}
fn read(&mut self, into: &mut [u8]) -> Result<(), Error> {
if into.len() > self.len() {
let len = into.len();
into.copy_from_slice(&self[..len]);
}
}
#[cfg(feature = "std")]
impl From<std::io::Error> for Error {
fn from(err: std::io::Error) -> Self {
use std::io::ErrorKind::*;
match err.kind() {
NotFound => "io error: NotFound".into(),
PermissionDenied => "io error: PermissionDenied".into(),
ConnectionRefused => "io error: ConnectionRefused".into(),
ConnectionReset => "io error: ConnectionReset".into(),
ConnectionAborted => "io error: ConnectionAborted".into(),
NotConnected => "io error: NotConnected".into(),
AddrInUse => "io error: AddrInUse".into(),
AddrNotAvailable => "io error: AddrNotAvailable".into(),
BrokenPipe => "io error: BrokenPipe".into(),
AlreadyExists => "io error: AlreadyExists".into(),
WouldBlock => "io error: WouldBlock".into(),
InvalidInput => "io error: InvalidInput".into(),
InvalidData => "io error: InvalidData".into(),
TimedOut => "io error: TimedOut".into(),
WriteZero => "io error: WriteZero".into(),
Interrupted => "io error: Interrupted".into(),
Other => "io error: Other".into(),
UnexpectedEof => "io error: UnexpectedEof".into(),
_ => "io error: Unkown".into(),
}
/// Wrapper that implements Input for any `Read` and `Seek` type.
#[cfg(feature = "std")]
pub struct IoReader<R: std::io::Read + std::io::Seek>(pub R);
impl<R: std::io::Read + std::io::Seek> Input for IoReader<R> {
fn remaining_len(&mut self) -> Result<usize, Error> {
use std::convert::TryInto;
use std::io::SeekFrom;
let old_pos = self.0.seek(SeekFrom::Current(0))?;
let len = self.0.seek(SeekFrom::End(0))?;
// Avoid seeking a third time when we were already at the end of the
// stream. The branch is usually way cheaper than a seek operation.
if old_pos != len {
self.0.seek(SeekFrom::Start(old_pos))?;
}
len.saturating_sub(old_pos)
.try_into()
.map_err(|_| "Input cannot fit into usize length".into())
}
fn read(&mut self, into: &mut [u8]) -> Result<(), Error> {
self.0.read_exact(into).map_err(Into::into)
}
}
/// Trait that allows writing of data.
pub trait Output: Sized {
/// Write to the output.
fn write(&mut self, bytes: &[u8]);
/// Write a single byte to the output.
fn push_byte(&mut self, byte: u8) {
self.write(&[byte]);
}
/// Write encoding of given value to the output.
fn push<V: Encode + ?Sized>(&mut self, value: &V) {
value.encode_to(self);
}
}
#[cfg(not(feature = "std"))]
impl Output for Vec<u8> {
fn write(&mut self, bytes: &[u8]) {
self.extend_from_slice(bytes)
impl<W: std::io::Write> Output for W {
(self as &mut dyn std::io::Write).write_all(bytes).expect("Codec outputs are infallible");
/// This enum must not be exported and must only be instantiable by parity-scale-codec.
/// Because implementation of Encode and Decode for u8 is done in this crate
/// and there is not other usage.
pub enum IsU8 {
Yes,
No,
}
/// Trait that allows zero-copy write of value-references to slices in LE format.
///
/// Implementations should override `using_encoded` for value types and `encode_to` and `size_hint` for allocating types.
/// Wrapper types should override all methods.
#[doc(hidden)]
// This const is used to optimise implementation of codec for Vec<u8>.
const IS_U8: IsU8 = IsU8::No;
/// If possible give a hint of expected size of the encoding.
///
/// This method is used inside default implementation of `encode`
/// to avoid re-allocations.
fn size_hint(&self) -> usize {
0
}
/// Convert self to a slice and append it to the destination.
fn encode_to<T: Output>(&self, dest: &mut T) {
self.using_encoded(|buf| dest.write(buf));
}
/// Convert self to an owned vector.
fn encode(&self) -> Vec<u8> {
let mut r = Vec::with_capacity(self.size_hint());
self.encode_to(&mut r);
r
}
/// Convert self to a slice and then invoke the given closure with it.
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&self.encode())
}
}
/// Trait that allows the length of a collection to be read, without having
/// to read and decode the entire elements.
pub trait DecodeLength {
/// Return the number of elements in `self_encoded`.
fn len(self_encoded: &[u8]) -> Result<usize, Error>;
/// Trait that allows zero-copy read of value-references from slices in LE format.
pub trait Decode: Sized {
#[doc(hidden)]
const IS_U8: IsU8 = IsU8::No;
/// Attempt to deserialise the value from input.
fn decode<I: Input>(value: &mut I) -> Result<Self, Error>;
}
/// Trait that allows zero-copy read/write of value-references to/from slices in LE format.
pub trait Codec: Decode + Encode {}
impl<S: Decode + Encode> Codec for S {}
/// A marker trait for types that wrap other encodable type.
///
/// Such types should not carry any additional information
/// that would require to be encoded, because the encoding
/// is assumed to be the same as the wrapped type.
pub trait WrapperTypeEncode: Deref {}
impl<T: ?Sized> WrapperTypeEncode for Box<T> {}
impl<T: ?Sized + Encode> EncodeLike for Box<T> {}
impl<T: Encode> EncodeLike<T> for Box<T> {}
impl<'a, T: ?Sized> WrapperTypeEncode for &'a T {}
impl<'a, T: Encode> EncodeLike for &'a T {}
impl<'a, T: ?Sized> WrapperTypeEncode for &'a mut T {}
impl<'a, T: Encode> EncodeLike for &'a mut T {}
#[cfg(any(feature = "std", feature = "full"))]
mod feature_full_wrapper_type_encode {
use super::*;
impl<'a, T: ToOwned + ?Sized> WrapperTypeEncode for Cow<'a, T> {}
impl<'a, T: ToOwned + Encode + ?Sized> EncodeLike for Cow<'a, T> {}
impl<'a, T: ToOwned + Encode> EncodeLike<T> for Cow<'a, T> {}
impl<T: ?Sized> WrapperTypeEncode for Arc<T> {}
impl<T: Encode> EncodeLike for Arc<T> {}
impl<T: Encode> EncodeLike<T> for Arc<T> {}
impl<T: ?Sized> WrapperTypeEncode for Rc<T> {}
impl<T: Encode> EncodeLike for Rc<T> {}
impl<T: Encode> EncodeLike<T> for Rc<T> {}
impl WrapperTypeEncode for String {}
impl EncodeLike for String {}
impl EncodeLike<&str> for String {}
impl EncodeLike<String> for &str {}
}
impl<T, X> Encode for X where
T: Encode + ?Sized,
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
{
fn size_hint(&self) -> usize {
(&**self).size_hint()
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
(&**self).using_encoded(f)
}
fn encode(&self) -> Vec<u8> {
(&**self).encode()
}
fn encode_to<W: Output>(&self, dest: &mut W) {
(&**self).encode_to(dest)
}
}
/// A marker trait for types that can be created solely from other decodable types.
///
/// The decoding of such type is assumed to be the same as the wrapped type.
pub trait WrapperTypeDecode: Sized {
/// A wrapped type.
type Wrapped: Into<Self>;
}
impl<T> WrapperTypeDecode for Box<T> {
type Wrapped = T;
}
#[cfg(any(feature = "std", feature = "full"))]
type Wrapped = T;
}
#[cfg(any(feature = "std", feature = "full"))]
type Wrapped = T;
}
impl<T, X> Decode for X where
T: Decode + Into<X>,
X: WrapperTypeDecode<Wrapped=T>,
{
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
Ok(T::decode(input)?.into())
}
}
/// Something that can be encoded as a reference.
pub trait EncodeAsRef<'a, T: 'a> {
/// The reference type that is used for encoding.
type RefType: Encode + From<&'a T>;
}
impl<T: Encode, E: Encode> Encode for Result<T, E> {
fn size_hint(&self) -> usize {
1 + match *self {
Ok(ref t) => t.size_hint(),
Err(ref t) => t.size_hint(),
}
}
fn encode_to<W: Output>(&self, dest: &mut W) {
match *self {
Ok(ref t) => {
dest.push_byte(0);
t.encode_to(dest);
}
Err(ref e) => {
dest.push_byte(1);
e.encode_to(dest);
}
}
}
}
impl<T: Encode, E: Encode> EncodeLike for Result<T, E> {}
impl<T: Decode, E: Decode> Decode for Result<T, E> {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
0 => Ok(Ok(T::decode(input)?)),
1 => Ok(Err(E::decode(input)?)),
_ => Err("unexpected first byte decoding Result".into()),
}
}
}
/// Shim type because we can't do a specialised implementation for `Option<bool>` directly.
impl core::fmt::Debug for OptionBool {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&[match *self {
OptionBool(None) => 0u8,
OptionBool(Some(true)) => 1u8,
OptionBool(Some(false)) => 2u8,
}])
}
}
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
0 => Ok(OptionBool(None)),
1 => Ok(OptionBool(Some(true))),
2 => Ok(OptionBool(Some(false))),
_ => Err("unexpected first byte decoding OptionBool".into()),
impl<T: Encode> EncodeLike for Option<T> {}
fn size_hint(&self) -> usize {
1 + match *self {
Some(ref t) => t.size_hint(),
None => 0,
}
}
fn encode_to<W: Output>(&self, dest: &mut W) {
match *self {
Some(ref t) => {
dest.push_byte(1);
t.encode_to(dest);
}
None => dest.push_byte(0),
}
}
}
impl<T: Decode> Decode for Option<T> {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
0 => Ok(None),
1 => Ok(Some(T::decode(input)?)),
_ => Err("unexpecded first byte decoding Option".into()),
( $( $n:expr, )* ) => {
$(
impl<T: Encode> Encode for [T; $n] {
fn encode_to<W: Output>(&self, dest: &mut W) {
for item in self.iter() {
item.encode_to(dest);
}
impl<T: Decode> Decode for [T; $n] {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
let mut r = ArrayVec::new();
for _ in 0..$n {
r.push(T::decode(input)?);
}
let i = r.into_inner();
match i {
Ok(a) => Ok(a),
Err(_) => Err("failed to get inner array from ArrayVec".into()),
}
impl<T: Encode> EncodeLike for [T; $n] {}
)*
}
impl_array!(
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108,
109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124,
125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140,
141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156,
157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172,
173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188,
189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204,
205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220,
221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236,
237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252,
253, 254, 255, 256, 384, 512, 768, 1024, 2048, 4096, 8192, 16384, 32768,
);
impl Encode for str {
fn size_hint(&self) -> usize {
self.as_bytes().size_hint()
}
fn encode_to<W: Output>(&self, dest: &mut W) {
self.as_bytes().encode_to(dest)
}
fn encode(&self) -> Vec<u8> {
self.as_bytes().encode()
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
self.as_bytes().using_encoded(f)
#[cfg(any(feature = "std", feature = "full"))]
impl<'a, T: ToOwned + ?Sized> Decode for Cow<'a, T>
where <T as ToOwned>::Owned: Decode,
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
Ok(Cow::Owned(Decode::decode(input)?))
impl<T> Encode for PhantomData<T> {
fn encode_to<W: Output>(&self, _dest: &mut W) {}
impl<T> Decode for PhantomData<T> {
fn decode<I: Input>(_input: &mut I) -> Result<Self, Error> {
Ok(PhantomData)
#[cfg(any(feature = "std", feature = "full"))]
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
Ok(Self::from_utf8_lossy(&Vec::decode(input)?).into())
pub(crate) fn compact_encode_len_to<W: Output>(dest: &mut W, len: usize) -> Result<(), Error> {
if len > u32::max_value() as usize {
return Err("Attempted to serialize a collection with too many elements.".into());
}
Compact(len as u32).encode_to(dest);
Ok(())
}
impl<T: Encode> EncodeLike for &[T] {}
impl<T: Encode> EncodeLike<Vec<T>> for &[T] {}
fn size_hint(&self) -> usize {
if let IsU8::Yes = <T as Encode>::IS_U8 {
self.len() + mem::size_of::<u32>()
} else {
0
}
}
compact_encode_len_to(dest, self.len()).expect("Compact encodes length");
if let IsU8::Yes= <T as Encode>::IS_U8 {
let self_transmute = unsafe {
core::mem::transmute::<&[T], &[u8]>(self)
};
dest.write(self_transmute)
} else {
for item in self {
item.encode_to(dest);
}
impl<T> WrapperTypeEncode for Vec<T> {}
impl<T: Encode> EncodeLike for Vec<T> {}
impl<T: Encode> EncodeLike<&[T]> for Vec<T> {}
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
<Compact<u32>>::decode(input).and_then(move |Compact(len)| {
let len = len as usize;
if let IsU8::Yes = <T as Decode>::IS_U8 {
if len > input.remaining_len()? {
return Err("Not enough data to decode vector".into());
}
let mut r = vec![0; len];
input.read(&mut r)?;
let r = unsafe { mem::transmute::<Vec<u8>, Vec<T>>(r) };
let capacity = input.remaining_len()?.checked_div(mem::size_of::<T>())
.unwrap_or(0);
let mut r = Vec::with_capacity(capacity);
for _ in 0..len {
r.push(T::decode(input)?);
}
Ok(r)
macro_rules! impl_codec_through_iterator {
($(
$type:ty
{ $( $generics:ident ),* }
{ $( $encode_generics:tt )* }
{ $( $decode_generics:tt )* }
)*) => {$(
impl<$($encode_generics)*> Encode for $type {
fn encode_to<W: Output>(&self, dest: &mut W) {
compact_encode_len_to(dest, self.len()).expect("Compact encodes length");
for i in self.iter() {
i.encode_to(dest);
}
}
impl<$($decode_generics)*> Decode for $type {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
<Compact<u32>>::decode(input).and_then(move |Compact(len)| {
Result::from_iter((0..len).map(|_| Decode::decode(input)))
})
impl<$($encode_generics)*> EncodeLike for $type {}
impl<$($encode_generics)*> EncodeLike<&[( $( $generics ),* )]> for $type {}
impl<$($encode_generics)*> EncodeLike<$type> for &[( $( $generics ),* )] {}
)*}
}
impl_codec_through_iterator! {
BTreeMap<K, V> { K, V } { K: Encode , V: Encode } { K: Decode + Ord, V: Decode }
BTreeSet<T> { T } { T: Encode } { T: Decode + Ord }
LinkedList<T> { T } { T: Encode } { T: Decode }
BinaryHeap<T> { T } { T: Encode } { T: Decode + Ord }
impl<T: Encode + Ord> EncodeLike for VecDeque<T> {}
impl<T: Encode + Ord> EncodeLike<&[T]> for VecDeque<T> {}
impl<T: Encode + Ord> EncodeLike<VecDeque<T>> for &[T] {}
impl<T: Encode + Ord> Encode for VecDeque<T> {
fn encode_to<W: Output>(&self, dest: &mut W) {
compact_encode_len_to(dest, self.len()).expect("Compact encodes length");
if let IsU8::Yes = <T as Encode>::IS_U8 {
let slices = self.as_slices();
let slices_transmute = unsafe {
core::mem::transmute::<(&[T], &[T]), (&[u8], &[u8])>(slices)
};
dest.write(slices_transmute.0);
dest.write(slices_transmute.1);
} else {
for item in self {
item.encode_to(dest);
}
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
fn encode_to<W: Output>(&self, _dest: &mut W) {
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&[])
}
fn encode(&self) -> Vec<u8> {
Vec::new()
}
}
impl Decode for () {
fn decode<I: Input>(_: &mut I) -> Result<(), Error> {
Ok(())
macro_rules! impl_len {
( $( $type:ident< $($g:ident),* > ),* ) => { $(
impl<$($g),*> DecodeLength for $type<$($g),*> {
fn len(mut self_encoded: &[u8]) -> Result<usize, Error> {
usize::try_from(u32::from(Compact::<u32>::decode(&mut self_encoded)?))
.map_err(|_| "Failed convert decoded size into usize.".into())
}
}
)*}
}
// Collection types that support compact decode length.
impl_len!(Vec<T>, BTreeSet<T>, BTreeMap<K, V>, VecDeque<T>, BinaryHeap<T>, LinkedList<T>);
fn size_hint(&self) -> usize {
self.0.size_hint()
}
fn encode_to<T: Output>(&self, dest: &mut T) {
self.0.encode_to(dest);
}
fn encode(&self) -> Vec<u8> {
self.0.encode()
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
self.0.using_encoded(f)
}
}
impl<$one: Decode> Decode for ($one,) {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
Err(e) => Err(e),
Ok($one) => Ok(($one,)),
impl<$one: EncodeLike<$extra>, $extra: Encode> crate::EncodeLike<($extra,)> for ($one,) {}
(($first:ident, $fextra:ident), $( ( $rest:ident, $rextra:ident ), )+) => {
impl<$first: Encode, $($rest: Encode),+> Encode for ($first, $($rest),+) {
fn size_hint(&self) -> usize {
let (
ref $first,
$(ref $rest),+
) = *self;
$first.size_hint()
$( + $rest.size_hint() )+
}
fn encode_to<T: Output>(&self, dest: &mut T) {
let (
ref $first,
$(ref $rest),+
) = *self;
$first.encode_to(dest);
$($rest.encode_to(dest);)+
}
}
impl<$first: Decode, $($rest: Decode),+> Decode for ($first, $($rest),+) {
fn decode<INPUT: Input>(input: &mut INPUT) -> Result<Self, super::Error> {
Ok((
Ok(x) => x,
Err(e) => return Err(e),
Ok(x) => x,
Err(e) => return Err(e),
impl<$first: EncodeLike<$fextra>, $fextra: Encode,
$($rest: EncodeLike<$rextra>, $rextra: Encode),+> crate::EncodeLike<($fextra, $( $rextra ),+)>
for ($first, $($rest),+) {}
tuple_impl!( $( ($rest, $rextra), )+ );
}
}
#[allow(non_snake_case)]
mod inner_tuple_impl {
use super::*;
tuple_impl!(
(A0, A1), (B0, B1), (C0, C1), (D0, D1), (E0, E1), (F0, F1), (G0, G1), (H0, H1), (I0, I1),
(J0, J1), (K0, K1), (L0, L1), (M0, M1), (N0, N1), (O0, O1), (P0, P1), (Q0, Q1), (R0, R1),
);
}
/// Trait to allow conversion to a know endian representation when sensitive.
/// Types implementing this trait must have a size > 0.
///
/// # Note
///
/// The copy bound and static lifetimes are necessary for safety of `Codec` blanket
/// implementation.
trait EndianSensitive: Copy + 'static {
fn to_le(self) -> Self { self }
fn to_be(self) -> Self { self }
fn from_le(self) -> Self { self }
fn from_be(self) -> Self { self }
fn as_be_then<T, F: FnOnce(&Self) -> T>(&self, f: F) -> T { f(&self) }
fn as_le_then<T, F: FnOnce(&Self) -> T>(&self, f: F) -> T { f(&self) }
}
macro_rules! impl_endians {
( $( $t:ty ),* ) => { $(
impl EndianSensitive for $t {
fn to_le(self) -> Self { <$t>::to_le(self) }
fn to_be(self) -> Self { <$t>::to_be(self) }
fn from_le(self) -> Self { <$t>::from_le(self) }
fn from_be(self) -> Self { <$t>::from_be(self) }
fn as_be_then<T, F: FnOnce(&Self) -> T>(&self, f: F) -> T { let d = self.to_be(); f(&d) }
fn as_le_then<T, F: FnOnce(&Self) -> T>(&self, f: F) -> T { let d = self.to_le(); f(&d) }
}
fn size_hint(&self) -> usize {
mem::size_of::<$t>()
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
self.as_le_then(|le| {
let size = mem::size_of::<$t>();
let value_slice = unsafe {
let ptr = le as *const _ as *const u8;
if size != 0 {
slice::from_raw_parts(ptr, size)
} else {
&[]
}
};
f(value_slice)
})
}
}
impl Decode for $t {
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
let size = mem::size_of::<$t>();
assert!(size > 0, "EndianSensitive can never be implemented for a zero-sized type.");
let mut val: $t = unsafe { mem::zeroed() };
unsafe {
let raw: &mut [u8] = slice::from_raw_parts_mut(
&mut val as *mut $t as *mut u8,
size
);
}
}
)* }
}
macro_rules! impl_non_endians {
( $( $t:ty $( { $is_u8:ident } )? ),* ) => { $(
$( const $is_u8: IsU8 = IsU8::Yes; )?
fn size_hint(&self) -> usize {
mem::size_of::<$t>()
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
self.as_le_then(|le| {
let size = mem::size_of::<$t>();
let value_slice = unsafe {
let ptr = le as *const _ as *const u8;
if size != 0 {
slice::from_raw_parts(ptr, size)
} else {
&[]
}
};
f(value_slice)
})
}
}
impl Decode for $t {
$( const $is_u8: IsU8 = IsU8::Yes; )?
fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
let size = mem::size_of::<$t>();
assert!(size > 0, "EndianSensitive can never be implemented for a zero-sized type.");
let mut val: $t = unsafe { mem::zeroed() };
unsafe {
let raw: &mut [u8] = slice::from_raw_parts_mut(
&mut val as *mut $t as *mut u8,
size
);
impl_endians!(u16, u32, u64, u128, i16, i32, i64, i128);
impl_non_endians!(u8 {IS_U8}, i8, bool);
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn vec_is_slicable() {
let v = b"Hello world".to_vec();
v.using_encoded(|ref slice|
);
}
#[test]
fn encode_borrowed_tuple() {
let x = vec![1u8, 2, 3, 4];
let y = 128i64;
let encoded = (&x, &y).encode();
assert_eq!((x, y), Decode::decode(&mut &encoded[..]).unwrap());
#[test]
fn cow_works() {
let x = &[1u32, 2, 3, 4, 5, 6][..];
let y = Cow::Borrowed(&x);
assert_eq!(x.encode(), y.encode());
let z: Cow<'_, [u32]> = Cow::decode(&mut &x.encode()[..]).unwrap();
assert_eq!(*z, *x);
}
#[test]
fn cow_string_works() {
let x = "Hello world!";
let y = Cow::Borrowed(&x);
assert_eq!(x.encode(), y.encode());
let z: Cow<'_, str> = Cow::decode(&mut &x.encode()[..]).unwrap();
fn hexify(bytes: &[u8]) -> String {
Konstantin Yegupov
committed
bytes.iter().map(|ref b| format!("{:02x}", b)).collect::<Vec<String>>().join(" ")