Newer
Older
// Copyright 2017, 2018 Parity Technologies
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
//! Serialisation.
use alloc::vec::Vec;
use alloc::boxed::Box;
use core::{mem, slice};
use arrayvec::ArrayVec;
/// Trait that allows reading of data into a slice.
pub trait Input {
/// Read into the provided input slice. Returns the number of bytes read.
fn read(&mut self, into: &mut [u8]) -> usize;
/// Read a single byte from the input.
fn read_byte(&mut self) -> Option<u8> {
let mut buf = [0u8];
match self.read(&mut buf[..]) {
0 => None,
1 => Some(buf[0]),
_ => unreachable!(),
}
}
}
#[cfg(not(feature = "std"))]
impl<'a> Input for &'a [u8] {
fn read(&mut self, into: &mut [u8]) -> usize {
let len = ::core::cmp::min(into.len(), self.len());
into[..len].copy_from_slice(&self[..len]);
*self = &self[len..];
len
}
}
#[cfg(feature = "std")]
impl<R: ::std::io::Read> Input for R {
fn read(&mut self, into: &mut [u8]) -> usize {
match (self as &mut ::std::io::Read).read_exact(into) {
Ok(()) => into.len(),
Err(_) => 0,
}
}
}
/// Prefix another input with a byte.
struct PrefixInput<'a, T: 'a> {
prefix: Option<u8>,
input: &'a mut T,
}
impl<'a, T: 'a + Input> Input for PrefixInput<'a, T> {
fn read(&mut self, buffer: &mut [u8]) -> usize {
match self.prefix.take() {
Some(v) if buffer.len() > 0 => {
buffer[0] = v;
1 + self.input.read(&mut buffer[1..])
}
_ => self.input.read(buffer)
}
}
}
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/// Trait that allows writing of data.
pub trait Output: Sized {
/// Write to the output.
fn write(&mut self, bytes: &[u8]);
fn push_byte(&mut self, byte: u8) {
self.write(&[byte]);
}
fn push<V: Encode + ?Sized>(&mut self, value: &V) {
value.encode_to(self);
}
}
#[cfg(not(feature = "std"))]
impl Output for Vec<u8> {
fn write(&mut self, bytes: &[u8]) {
self.extend(bytes);
}
}
#[cfg(feature = "std")]
impl<W: ::std::io::Write> Output for W {
fn write(&mut self, bytes: &[u8]) {
(self as &mut ::std::io::Write).write_all(bytes).expect("Codec outputs are infallible");
}
}
/// Trait that allows zero-copy write of value-references to slices in LE format.
/// Implementations should override `using_encoded` for value types and `encode_to` for allocating types.
pub trait Encode {
/// Convert self to a slice and append it to the destination.
fn encode_to<T: Output>(&self, dest: &mut T) {
self.using_encoded(|buf| dest.write(buf));
}
/// Convert self to an owned vector.
fn encode(&self) -> Vec<u8> {
let mut r = Vec::new();
self.encode_to(&mut r);
r
}
/// Convert self to a slice and then invoke the given closure with it.
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&self.encode())
}
}
/// Trait that allows zero-copy read of value-references from slices in LE format.
pub trait Decode: Sized {
/// Attempt to deserialise the value from input.
fn decode<I: Input>(value: &mut I) -> Option<Self>;
}
/// Trait that allows zero-copy read/write of value-references to/from slices in LE format.
pub trait Codec: Decode + Encode {}
/// Compact-encoded variant of T. This is more space-efficient but less compute-efficient.
impl<T> From<T> for Compact<T> {
fn from(x: T) -> Compact<T> { Compact(x) }
}
impl From<Compact<u8>> for u8 {
fn from(x: Compact<u8>) -> u8 { x.0 }
}
impl From<Compact<u16>> for u16 {
fn from(x: Compact<u16>) -> u16 { x.0 }
}
impl From<Compact<u32>> for u32 {
fn from(x: Compact<u32>) -> u32 { x.0 }
}
// compact encoding:
// 0b00 00 00 00 / 00 00 00 00 / 00 00 00 00 / 00 00 00 00
// xx xx xx 00 (0 ... 2**6 - 1) (u8)
// yL yL yL 01 / yH yH yH yL (2**6 ... 2**14 - 1) (u8, u16) low LH high
// zL zL zL 10 / zM zM zM zL / zM zM zM zM / zH zH zH zM (2**14 ... 2**30 - 1) (u16, u32) low LMMH high
// nn nn nn 11 [ / zz zz zz zz ]{4 + n} (2**30 ... 2**536 - 1) (u32, u64, u128, U256, U512, U520) straight LE-encoded
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
// Note: we use *LOW BITS* of the LSB in LE encoding to encode the 2 bit key.
impl Encode for Compact<u8> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match self.0 {
0...0b00111111 => dest.push_byte(self.0 << 2),
_ => (((self.0 as u16) << 2) | 0b01).encode_to(dest),
}
}
}
impl Encode for Compact<u16> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match self.0 {
0...0b00111111 => dest.push_byte((self.0 as u8) << 2),
0...0b00111111_11111111 => ((self.0 << 2) | 0b01).encode_to(dest),
_ => (((self.0 as u32) << 2) | 0b10).encode_to(dest),
}
}
}
impl Encode for Compact<u32> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match self.0 {
0...0b00111111 => dest.push_byte((self.0 as u8) << 2),
0...0b00111111_11111111 => (((self.0 as u16) << 2) | 0b01).encode_to(dest),
0...0b00111111_11111111_11111111_11111111 => ((self.0 << 2) | 0b10).encode_to(dest),
_ => {
dest.push_byte(0b11);
self.0.encode_to(dest);
}
}
}
}
impl Decode for Compact<u8> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let prefix = input.read_byte()?;
Some(Compact(match prefix % 4 {
0 => prefix as u8 >> 2,
1 => {
let x = u16::decode(&mut PrefixInput{prefix: Some(prefix), input})? >> 2;
if x < 256 {
x as u8
} else {
return None
}
}
_ => return None,
}))
}
}
impl Decode for Compact<u16> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let prefix = input.read_byte()?;
Some(Compact(match prefix % 4 {
0 => prefix as u16 >> 2,
1 => u16::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u16 >> 2,
2 => {
let x = u32::decode(&mut PrefixInput{prefix: Some(prefix), input})? >> 2;
if x < 65536 {
x as u16
} else {
return None
}
}
_ => return None,
}))
}
}
impl Decode for Compact<u32> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let prefix = input.read_byte()?;
Some(Compact(match prefix % 4 {
0 => prefix as u32 >> 2,
1 => u16::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u32 >> 2,
2 => u32::decode(&mut PrefixInput{prefix: Some(prefix), input})? as u32 >> 2,
3|_ => { // |_. yeah, i know.
if prefix >> 2 == 0 {
// just 4 bytes. ok.
u32::decode(input)?
} else {
// Out of range for a 32-bit quantity.
return None
}
}
}))
}
}
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
impl<S: Decode + Encode> Codec for S {}
impl<T: Encode, E: Encode> Encode for Result<T, E> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match *self {
Ok(ref t) => {
dest.push_byte(0);
t.encode_to(dest);
}
Err(ref e) => {
dest.push_byte(1);
e.encode_to(dest);
}
}
}
}
impl<T: Decode, E: Decode> Decode for Result<T, E> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
match input.read_byte()? {
0 => Some(Ok(T::decode(input)?)),
1 => Some(Err(E::decode(input)?)),
_ => None,
}
}
}
/// Shim type because we can't do a specialised implementation for `Option<bool>` directly.
pub struct OptionBool(pub Option<bool>);
impl Encode for OptionBool {
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&[match *self {
OptionBool(None) => 0u8,
OptionBool(Some(true)) => 1u8,
OptionBool(Some(false)) => 2u8,
}])
}
}
impl Decode for OptionBool {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
match input.read_byte()? {
0 => Some(OptionBool(None)),
1 => Some(OptionBool(Some(true))),
2 => Some(OptionBool(Some(false))),
_ => None,
}
}
}
impl<T: Encode> Encode for Option<T> {
fn encode_to<W: Output>(&self, dest: &mut W) {
match *self {
Some(ref t) => {
dest.push_byte(1);
t.encode_to(dest);
}
None => dest.push_byte(0),
}
}
}
impl<T: Decode> Decode for Option<T> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
match input.read_byte()? {
0 => Some(None),
1 => Some(Some(T::decode(input)?)),
_ => None,
}
}
}
macro_rules! impl_array {
( $( $n:expr )* ) => { $(
impl<T: Encode> Encode for [T; $n] {
fn encode_to<W: Output>(&self, dest: &mut W) {
for item in self.iter() {
item.encode_to(dest);
}
}
}
impl<T: Decode> Decode for [T; $n] {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let mut r = ArrayVec::new();
for _ in 0..$n {
r.push(T::decode(input)?);
}
r.into_inner().ok()
}
}
)* }
}
impl_array!(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
40 48 56 64 72 96 128 160 192 224 256);
impl<T: Encode> Encode for Box<T> {
fn encode_to<W: Output>(&self, dest: &mut W) {
self.as_ref().encode_to(dest)
}
}
impl<T: Decode> Decode for Box<T> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
Some(Box::new(T::decode(input)?))
}
}
impl Encode for [u8] {
fn encode_to<W: Output>(&self, dest: &mut W) {
let len = self.len();
assert!(len <= u32::max_value() as usize, "Attempted to serialize a collection with too many elements.");
dest.write(self)
}
}
impl Encode for Vec<u8> {
fn encode_to<W: Output>(&self, dest: &mut W) {
self.as_slice().encode_to(dest)
}
}
impl Decode for Vec<u8> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
<Compact<u32>>::decode(input).and_then(move |Compact(len)| {
let len = len as usize;
let mut vec = vec![0; len];
if input.read(&mut vec[..len]) != len {
None
} else {
Some(vec)
}
})
}
}
impl<'a> Encode for &'a str {
fn encode_to<W: Output>(&self, dest: &mut W) {
self.as_bytes().encode_to(dest)
}
}
#[cfg(feature = "std")]
impl<'a, T: ToOwned + ?Sized + 'a> Encode for ::std::borrow::Cow<'a, T> where
&'a T: Encode,
<T as ToOwned>::Owned: Encode
{
match self {
::std::borrow::Cow::Owned(ref x) => x.encode_to(dest),
::std::borrow::Cow::Borrowed(x) => x.encode_to(dest),
}
impl<'a, T: ToOwned + ?Sized> Decode for ::std::borrow::Cow<'a, T> where
<T as ToOwned>::Owned: Decode
{
fn decode<I: Input>(input: &mut I) -> Option<Self> {
#[cfg(feature = "std")]
impl<T> Encode for ::std::marker::PhantomData<T> {
fn encode_to<W: Output>(&self, _dest: &mut W) {
}
}
#[cfg(feature = "std")]
impl<T> Decode for ::std::marker::PhantomData<T> {
fn decode<I: Input>(_input: &mut I) -> Option<Self> {
Some(::std::marker::PhantomData)
}
}
#[cfg(feature = "std")]
impl Encode for String {
fn encode_to<W: Output>(&self, dest: &mut W) {
self.as_bytes().encode_to(dest)
}
}
#[cfg(feature = "std")]
impl Decode for String {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
Some(Self::from_utf8_lossy(&Vec::decode(input)?).into())
}
}
impl<T: Encode> Encode for [T] {
fn encode_to<W: Output>(&self, dest: &mut W) {
let len = self.len();
assert!(len <= u32::max_value() as usize, "Attempted to serialize a collection with too many elements.");
for item in self {
item.encode_to(dest);
}
}
}
impl<T: Encode> Encode for Vec<T> {
fn encode_to<W: Output>(&self, dest: &mut W) {
self.as_slice().encode_to(dest)
}
}
impl<T: Decode> Decode for Vec<T> {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
<Compact<u32>>::decode(input).and_then(move |Compact(len)| {
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
let mut r = Vec::with_capacity(len as usize);
for _ in 0..len {
r.push(T::decode(input)?);
}
Some(r)
})
}
}
impl Encode for () {
fn encode_to<T: Output>(&self, _dest: &mut T) {
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
f(&[])
}
fn encode(&self) -> Vec<u8> {
Vec::new()
}
}
impl<'a, T: 'a + Encode + ?Sized> Encode for &'a T {
fn encode_to<D: Output>(&self, dest: &mut D) {
(&**self).encode_to(dest)
}
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
(&**self).using_encoded(f)
}
fn encode(&self) -> Vec<u8> {
(&**self).encode()
}
}
impl Decode for () {
fn decode<I: Input>(_: &mut I) -> Option<()> {
Some(())
}
}
macro_rules! tuple_impl {
($one:ident,) => {
impl<$one: Encode> Encode for ($one,) {
fn encode_to<T: Output>(&self, dest: &mut T) {
self.0.encode_to(dest);
}
}
impl<$one: Decode> Decode for ($one,) {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
match $one::decode(input) {
None => None,
Some($one) => Some(($one,)),
}
}
}
};
($first:ident, $($rest:ident,)+) => {
impl<$first: Encode, $($rest: Encode),+>
Encode for
($first, $($rest),+) {
fn encode_to<T: Output>(&self, dest: &mut T) {
let (
ref $first,
$(ref $rest),+
) = *self;
$first.encode_to(dest);
$($rest.encode_to(dest);)+
}
}
impl<$first: Decode, $($rest: Decode),+>
Decode for
($first, $($rest),+) {
fn decode<INPUT: Input>(input: &mut INPUT) -> Option<Self> {
Some((
match $first::decode(input) {
Some(x) => x,
None => return None,
},
$(match $rest::decode(input) {
Some(x) => x,
None => return None,
},)+
))
}
}
tuple_impl!($($rest,)+);
}
}
#[allow(non_snake_case)]
mod inner_tuple_impl {
use super::{Input, Output, Decode, Encode};
tuple_impl!(A, B, C, D, E, F, G, H, I, J, K,);
}
/// Trait to allow conversion to a know endian representation when sensitive.
/// Types implementing this trait must have a size > 0.
// note: the copy bound and static lifetimes are necessary for safety of `Codec` blanket
// implementation.
trait EndianSensitive: Copy + 'static {
fn to_le(self) -> Self { self }
fn to_be(self) -> Self { self }
fn from_le(self) -> Self { self }
fn from_be(self) -> Self { self }
fn as_be_then<T, F: FnOnce(&Self) -> T>(&self, f: F) -> T { f(&self) }
fn as_le_then<T, F: FnOnce(&Self) -> T>(&self, f: F) -> T { f(&self) }
}
macro_rules! impl_endians {
( $( $t:ty ),* ) => { $(
impl EndianSensitive for $t {
fn to_le(self) -> Self { <$t>::to_le(self) }
fn to_be(self) -> Self { <$t>::to_be(self) }
fn from_le(self) -> Self { <$t>::from_le(self) }
fn from_be(self) -> Self { <$t>::from_be(self) }
fn as_be_then<T, F: FnOnce(&Self) -> T>(&self, f: F) -> T { let d = self.to_be(); f(&d) }
fn as_le_then<T, F: FnOnce(&Self) -> T>(&self, f: F) -> T { let d = self.to_le(); f(&d) }
}
impl Encode for $t {
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
self.as_le_then(|le| {
let size = mem::size_of::<$t>();
let value_slice = unsafe {
let ptr = le as *const _ as *const u8;
if size != 0 {
slice::from_raw_parts(ptr, size)
} else {
&[]
}
};
f(value_slice)
})
}
}
impl Decode for $t {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let size = mem::size_of::<$t>();
assert!(size > 0, "EndianSensitive can never be implemented for a zero-sized type.");
let mut val: $t = unsafe { mem::zeroed() };
unsafe {
let raw: &mut [u8] = slice::from_raw_parts_mut(
&mut val as *mut $t as *mut u8,
size
);
if input.read(raw) != size { return None }
}
Some(val.from_le())
}
}
)* }
}
macro_rules! impl_non_endians {
( $( $t:ty ),* ) => { $(
impl EndianSensitive for $t {}
impl Encode for $t {
fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
self.as_le_then(|le| {
let size = mem::size_of::<$t>();
let value_slice = unsafe {
let ptr = le as *const _ as *const u8;
if size != 0 {
slice::from_raw_parts(ptr, size)
} else {
&[]
}
};
f(value_slice)
})
}
}
impl Decode for $t {
fn decode<I: Input>(input: &mut I) -> Option<Self> {
let size = mem::size_of::<$t>();
assert!(size > 0, "EndianSensitive can never be implemented for a zero-sized type.");
let mut val: $t = unsafe { mem::zeroed() };
unsafe {
let raw: &mut [u8] = slice::from_raw_parts_mut(
&mut val as *mut $t as *mut u8,
size
);
if input.read(raw) != size { return None }
}
Some(val.from_le())
}
}
)* }
}
impl_endians!(u16, u32, u64, u128, usize, i16, i32, i64, i128, isize);
impl_non_endians!(i8, [u8; 1], [u8; 2], [u8; 3], [u8; 4], [u8; 5], [u8; 6], [u8; 7], [u8; 8],
[u8; 10], [u8; 12], [u8; 14], [u8; 16], [u8; 20], [u8; 24], [u8; 28], [u8; 32], [u8; 40],
[u8; 48], [u8; 56], [u8; 64], [u8; 80], [u8; 96], [u8; 112], [u8; 128], bool);
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn vec_is_slicable() {
let v = b"Hello world".to_vec();
v.using_encoded(|ref slice|
);
}
#[test]
fn encode_borrowed_tuple() {
let x = vec![1u8, 2, 3, 4];
let y = 128i64;
let encoded = (&x, &y).encode();
assert_eq!((x, y), Decode::decode(&mut &encoded[..]).unwrap());
}
#[test]
fn cow_works() {
let x = &[1u32, 2, 3, 4, 5, 6][..];
let y = Cow::Borrowed(&x);
assert_eq!(x.encode(), y.encode());
let z: Cow<[u32]> = Cow::decode(&mut &x.encode()[..]).unwrap();
assert_eq!(*z, *x);
}
#[test]
fn cow_string_works() {
let x = "Hello world!";
let y = Cow::Borrowed(&x);
assert_eq!(x.encode(), y.encode());
let z: Cow<str> = Cow::decode(&mut &x.encode()[..]).unwrap();
assert_eq!(*z, *x);
}
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
#[test]
fn compact_encoding_works() {
let tests = [(0u32, 1usize), (63, 1), (64, 2), (16383, 2), (16384, 4), (1073741823, 4), (1073741824, 5), (u32::max_value(), 5)];
for &(n, l) in &tests {
let encoded = Compact(n as u32).encode();
assert_eq!(encoded.len(), l);
assert_eq!(<Compact<u32>>::decode(&mut &encoded[..]).unwrap().0, n);
}
}
#[test]
fn compact_16_encoding_works() {
let tests = [(0u16, 1usize), (63, 1), (64, 2), (16383, 2), (16384, 4), (65535, 4)];
for &(n, l) in &tests {
let encoded = Compact(n as u16).encode();
assert_eq!(encoded.len(), l);
assert_eq!(<Compact<u16>>::decode(&mut &encoded[..]).unwrap().0, n);
}
assert!(<Compact<u16>>::decode(&mut &Compact(65536u32).encode()[..]).is_none());
}
#[test]
fn compact_8_encoding_works() {
let tests = [(0u8, 1usize), (63, 1), (64, 2), (255, 2)];
for &(n, l) in &tests {
let encoded = Compact(n as u8).encode();
assert_eq!(encoded.len(), l);
assert_eq!(<Compact<u8>>::decode(&mut &encoded[..]).unwrap().0, n);
}
assert!(<Compact<u8>>::decode(&mut &Compact(256u32).encode()[..]).is_none());
}