// Copyright 2019-2021 Parity Technologies (UK) Ltd. // This file is part of Parity Bridges Common. // Parity Bridges Common is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Parity Bridges Common is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Parity Bridges Common. If not, see . //! Substrate client as Substrate messages target. The chain we connect to should have //! runtime that implements `HeaderApi` to allow bridging with //! chain. use crate::{ messages_lane::{MessageLaneAdapter, ReceiveMessagesProofCallBuilder, SubstrateMessageLane}, messages_metrics::StandaloneMessagesMetrics, messages_source::{ensure_messages_pallet_active, read_client_state, SubstrateMessagesProof}, on_demand::OnDemandRelay, TransactionParams, }; use async_std::sync::Arc; use async_trait::async_trait; use bp_messages::{ storage_keys::inbound_lane_data_key, total_unrewarded_messages, InboundLaneData, LaneId, MessageNonce, UnrewardedRelayersState, }; use bridge_runtime_common::messages::{ source::FromBridgedChainMessagesDeliveryProof, target::FromBridgedChainMessagesProof, }; use codec::Encode; use frame_support::weights::{Weight, WeightToFeePolynomial}; use messages_relay::{ message_lane::{MessageLane, SourceHeaderIdOf, TargetHeaderIdOf}, message_lane_loop::{TargetClient, TargetClientState}, }; use num_traits::{Bounded, Zero}; use relay_substrate_client::{ AccountIdOf, AccountKeyPairOf, BalanceOf, BlockNumberOf, Chain, ChainWithMessages, Client, Error as SubstrateError, HashOf, HeaderIdOf, IndexOf, SignParam, TransactionEra, TransactionSignScheme, UnsignedTransaction, WeightToFeeOf, }; use relay_utils::{relay_loop::Client as RelayClient, HeaderId}; use sp_core::{Bytes, Pair}; use sp_runtime::{traits::Saturating, FixedPointNumber, FixedU128}; use std::{collections::VecDeque, convert::TryFrom, ops::RangeInclusive}; /// Message receiving proof returned by the target Substrate node. pub type SubstrateMessagesDeliveryProof = (UnrewardedRelayersState, FromBridgedChainMessagesDeliveryProof>); /// Substrate client as Substrate messages target. pub struct SubstrateMessagesTarget { target_client: Client, source_client: Client, lane_id: LaneId, relayer_id_at_source: AccountIdOf, transaction_params: TransactionParams>, metric_values: StandaloneMessagesMetrics, source_to_target_headers_relay: Option>>>, } impl SubstrateMessagesTarget

{ /// Create new Substrate headers target. pub fn new( target_client: Client, source_client: Client, lane_id: LaneId, relayer_id_at_source: AccountIdOf, transaction_params: TransactionParams>, metric_values: StandaloneMessagesMetrics, source_to_target_headers_relay: Option< Arc>>, >, ) -> Self { SubstrateMessagesTarget { target_client, source_client, lane_id, relayer_id_at_source, transaction_params, metric_values, source_to_target_headers_relay, } } /// Read inbound lane state from the on-chain storage at given block. async fn inbound_lane_data( &self, id: TargetHeaderIdOf>, ) -> Result>>, SubstrateError> { self.target_client .storage_value( inbound_lane_data_key( P::SourceChain::WITH_CHAIN_MESSAGES_PALLET_NAME, &self.lane_id, ), Some(id.1), ) .await } /// Ensure that the messages pallet at target chain is active. async fn ensure_pallet_active(&self) -> Result<(), SubstrateError> { ensure_messages_pallet_active::(&self.target_client).await } } impl Clone for SubstrateMessagesTarget

{ fn clone(&self) -> Self { Self { target_client: self.target_client.clone(), source_client: self.source_client.clone(), lane_id: self.lane_id, relayer_id_at_source: self.relayer_id_at_source.clone(), transaction_params: self.transaction_params.clone(), metric_values: self.metric_values.clone(), source_to_target_headers_relay: self.source_to_target_headers_relay.clone(), } } } #[async_trait] impl RelayClient for SubstrateMessagesTarget

{ type Error = SubstrateError; async fn reconnect(&mut self) -> Result<(), SubstrateError> { self.target_client.reconnect().await?; self.source_client.reconnect().await } } #[async_trait] impl TargetClient> for SubstrateMessagesTarget

where AccountIdOf: From< as Pair>::Public>, P::TargetTransactionSignScheme: TransactionSignScheme, BalanceOf: TryFrom>, { async fn state(&self) -> Result>, SubstrateError> { // we can't continue to deliver confirmations if source node is out of sync, because // it may have already received confirmations that we're going to deliver // // we can't continue to deliver messages if target node is out of sync, because // it may have already received (some of) messages that we're going to deliver self.source_client.ensure_synced().await?; self.target_client.ensure_synced().await?; // we can't relay messages if messages pallet at target chain is halted self.ensure_pallet_active().await?; read_client_state( &self.target_client, Some(&self.source_client), P::SourceChain::BEST_FINALIZED_HEADER_ID_METHOD, ) .await } async fn latest_received_nonce( &self, id: TargetHeaderIdOf>, ) -> Result<(TargetHeaderIdOf>, MessageNonce), SubstrateError> { // lane data missing from the storage is fine until first message is received let latest_received_nonce = self .inbound_lane_data(id) .await? .map(|data| data.last_delivered_nonce()) .unwrap_or(0); Ok((id, latest_received_nonce)) } async fn latest_confirmed_received_nonce( &self, id: TargetHeaderIdOf>, ) -> Result<(TargetHeaderIdOf>, MessageNonce), SubstrateError> { // lane data missing from the storage is fine until first message is received let last_confirmed_nonce = self .inbound_lane_data(id) .await? .map(|data| data.last_confirmed_nonce) .unwrap_or(0); Ok((id, last_confirmed_nonce)) } async fn unrewarded_relayers_state( &self, id: TargetHeaderIdOf>, ) -> Result<(TargetHeaderIdOf>, UnrewardedRelayersState), SubstrateError> { let inbound_lane_data = self.inbound_lane_data(id).await?; let last_delivered_nonce = inbound_lane_data.as_ref().map(|data| data.last_delivered_nonce()).unwrap_or(0); let relayers = inbound_lane_data.map(|data| data.relayers).unwrap_or_else(VecDeque::new); let unrewarded_relayers_state = bp_messages::UnrewardedRelayersState { unrewarded_relayer_entries: relayers.len() as _, messages_in_oldest_entry: relayers .front() .map(|entry| 1 + entry.messages.end - entry.messages.begin) .unwrap_or(0), total_messages: total_unrewarded_messages(&relayers).unwrap_or(MessageNonce::MAX), last_delivered_nonce, }; Ok((id, unrewarded_relayers_state)) } async fn prove_messages_receiving( &self, id: TargetHeaderIdOf>, ) -> Result< ( TargetHeaderIdOf>, as MessageLane>::MessagesReceivingProof, ), SubstrateError, > { let (id, relayers_state) = self.unrewarded_relayers_state(id).await?; let inbound_data_key = bp_messages::storage_keys::inbound_lane_data_key( P::SourceChain::WITH_CHAIN_MESSAGES_PALLET_NAME, &self.lane_id, ); let proof = self .target_client .prove_storage(vec![inbound_data_key], id.1) .await? .iter_nodes() .collect(); let proof = FromBridgedChainMessagesDeliveryProof { bridged_header_hash: id.1, storage_proof: proof, lane: self.lane_id, }; Ok((id, (relayers_state, proof))) } async fn submit_messages_proof( &self, _generated_at_header: SourceHeaderIdOf>, nonces: RangeInclusive, proof: as MessageLane>::MessagesProof, ) -> Result, SubstrateError> { let genesis_hash = *self.target_client.genesis_hash(); let transaction_params = self.transaction_params.clone(); let relayer_id_at_source = self.relayer_id_at_source.clone(); let nonces_clone = nonces.clone(); let (spec_version, transaction_version) = self.target_client.simple_runtime_version().await?; self.target_client .submit_signed_extrinsic( self.transaction_params.signer.public().into(), SignParam:: { spec_version, transaction_version, genesis_hash, signer: self.transaction_params.signer.clone(), }, move |best_block_id, transaction_nonce| { make_messages_delivery_transaction::

( &transaction_params, best_block_id, transaction_nonce, relayer_id_at_source, nonces_clone, proof, true, ) }, ) .await?; Ok(nonces) } async fn require_source_header_on_target(&self, id: SourceHeaderIdOf>) { if let Some(ref source_to_target_headers_relay) = self.source_to_target_headers_relay { source_to_target_headers_relay.require_more_headers(id.0).await; } } async fn estimate_delivery_transaction_in_source_tokens( &self, nonces: RangeInclusive, total_prepaid_nonces: MessageNonce, total_dispatch_weight: Weight, total_size: u32, ) -> Result< as MessageLane>::SourceChainBalance, SubstrateError> { let conversion_rate = self.metric_values.target_to_source_conversion_rate().await.ok_or_else(|| { SubstrateError::Custom(format!( "Failed to compute conversion rate from {} to {}", P::TargetChain::NAME, P::SourceChain::NAME, )) })?; let (spec_version, transaction_version) = self.target_client.simple_runtime_version().await?; // Prepare 'dummy' delivery transaction - we only care about its length and dispatch weight. let delivery_tx = P::TargetTransactionSignScheme::sign_transaction( SignParam { spec_version, transaction_version, genesis_hash: Default::default(), signer: self.transaction_params.signer.clone(), }, make_messages_delivery_transaction::

( &self.transaction_params, HeaderId(Default::default(), Default::default()), Zero::zero(), self.relayer_id_at_source.clone(), nonces.clone(), prepare_dummy_messages_proof::( nonces.clone(), total_dispatch_weight, total_size, ), false, )?, )? .encode(); let delivery_tx_fee = self.target_client.estimate_extrinsic_fee(Bytes(delivery_tx)).await?; let inclusion_fee_in_target_tokens = delivery_tx_fee.inclusion_fee(); // The pre-dispatch cost of delivery transaction includes additional fee to cover dispatch // fee payment (Currency::transfer in regular deployment). But if message dispatch has // already been paid at the Source chain, the delivery transaction will refund relayer with // this additional cost. But `estimate_extrinsic_fee` obviously just returns pre-dispatch // cost of the transaction. So if transaction delivers prepaid message, then it may happen // that pre-dispatch cost is larger than reward and `Rational` relayer will refuse to // deliver this message. // // The most obvious solution would be to deduct total weight of dispatch fee payments from // the `total_dispatch_weight` and use regular `estimate_extrinsic_fee` call. But what if // `total_dispatch_weight` is less than total dispatch fee payments weight? Weight is // strictly positive, so we can't use this option. // // Instead we'll be directly using `WeightToFee` and `NextFeeMultiplier` of the Target // chain. This requires more knowledge of the Target chain, but seems there's no better way // to solve this now. let expected_refund_in_target_tokens = if total_prepaid_nonces != 0 { const WEIGHT_DIFFERENCE: Weight = 100; let (spec_version, transaction_version) = self.target_client.simple_runtime_version().await?; let larger_dispatch_weight = total_dispatch_weight.saturating_add(WEIGHT_DIFFERENCE); let dummy_tx = P::TargetTransactionSignScheme::sign_transaction( SignParam { spec_version, transaction_version, genesis_hash: Default::default(), signer: self.transaction_params.signer.clone(), }, make_messages_delivery_transaction::

( &self.transaction_params, HeaderId(Default::default(), Default::default()), Zero::zero(), self.relayer_id_at_source.clone(), nonces.clone(), prepare_dummy_messages_proof::( nonces.clone(), larger_dispatch_weight, total_size, ), false, )?, )? .encode(); let larger_delivery_tx_fee = self.target_client.estimate_extrinsic_fee(Bytes(dummy_tx)).await?; compute_prepaid_messages_refund::( total_prepaid_nonces, compute_fee_multiplier::( delivery_tx_fee.adjusted_weight_fee, total_dispatch_weight, larger_delivery_tx_fee.adjusted_weight_fee, larger_dispatch_weight, ), ) } else { Zero::zero() }; let delivery_fee_in_source_tokens = convert_target_tokens_to_source_tokens::( FixedU128::from_float(conversion_rate), inclusion_fee_in_target_tokens.saturating_sub(expected_refund_in_target_tokens), ); log::trace!( target: "bridge", "Estimated {} -> {} messages delivery transaction.\n\t\ Total nonces: {:?}\n\t\ Prepaid messages: {}\n\t\ Total messages size: {}\n\t\ Total messages dispatch weight: {}\n\t\ Inclusion fee (in {1} tokens): {:?}\n\t\ Expected refund (in {1} tokens): {:?}\n\t\ {1} -> {0} conversion rate: {:?}\n\t\ Expected delivery tx fee (in {0} tokens): {:?}", P::SourceChain::NAME, P::TargetChain::NAME, nonces, total_prepaid_nonces, total_size, total_dispatch_weight, inclusion_fee_in_target_tokens, expected_refund_in_target_tokens, conversion_rate, delivery_fee_in_source_tokens, ); Ok(delivery_fee_in_source_tokens) } } /// Make messages delivery transaction from given proof. fn make_messages_delivery_transaction( target_transaction_params: &TransactionParams>, target_best_block_id: HeaderIdOf, transaction_nonce: IndexOf, relayer_id_at_source: AccountIdOf, nonces: RangeInclusive, proof: SubstrateMessagesProof, trace_call: bool, ) -> Result, SubstrateError> where P::TargetTransactionSignScheme: TransactionSignScheme, { let messages_count = nonces.end() - nonces.start() + 1; let dispatch_weight = proof.0; let call = P::ReceiveMessagesProofCallBuilder::build_receive_messages_proof_call( relayer_id_at_source, proof, messages_count as _, dispatch_weight, trace_call, ); Ok(UnsignedTransaction::new(call.into(), transaction_nonce) .era(TransactionEra::new(target_best_block_id, target_transaction_params.mortality))) } /// Prepare 'dummy' messages proof that will compose the delivery transaction. /// /// We don't care about proof actually being the valid proof, because its validity doesn't /// affect the call weight - we only care about its size. fn prepare_dummy_messages_proof( nonces: RangeInclusive, total_dispatch_weight: Weight, total_size: u32, ) -> SubstrateMessagesProof { ( total_dispatch_weight, FromBridgedChainMessagesProof { bridged_header_hash: Default::default(), storage_proof: vec![vec![ 0; SC::STORAGE_PROOF_OVERHEAD.saturating_add(total_size) as usize ]], lane: Default::default(), nonces_start: *nonces.start(), nonces_end: *nonces.end(), }, ) } /// Given delivery transaction fee in target chain tokens and conversion rate to the source /// chain tokens, compute transaction cost in source chain tokens. fn convert_target_tokens_to_source_tokens( target_to_source_conversion_rate: FixedU128, target_transaction_fee: TC::Balance, ) -> SC::Balance where SC::Balance: TryFrom, { SC::Balance::try_from( target_to_source_conversion_rate.saturating_mul_int(target_transaction_fee), ) .unwrap_or_else(|_| SC::Balance::max_value()) } /// Compute fee multiplier that is used by the chain, given a couple of fees for transactions /// that are only differ in dispatch weights. /// /// This function assumes that standard transaction payment pallet is used by the chain. /// The only fee component that depends on dispatch weight is the `adjusted_weight_fee`. /// /// **WARNING**: this functions will only be accurate if weight-to-fee conversion function /// is linear. For non-linear polynomials the error will grow with `weight_difference` growth. /// So better to use smaller differences. fn compute_fee_multiplier( smaller_adjusted_weight_fee: BalanceOf, smaller_tx_weight: Weight, larger_adjusted_weight_fee: BalanceOf, larger_tx_weight: Weight, ) -> FixedU128 { let adjusted_weight_fee_difference = larger_adjusted_weight_fee.saturating_sub(smaller_adjusted_weight_fee); let smaller_tx_unadjusted_weight_fee = WeightToFeeOf::::calc(&smaller_tx_weight); let larger_tx_unadjusted_weight_fee = WeightToFeeOf::::calc(&larger_tx_weight); FixedU128::saturating_from_rational( adjusted_weight_fee_difference, larger_tx_unadjusted_weight_fee.saturating_sub(smaller_tx_unadjusted_weight_fee), ) } /// Compute fee that will be refunded to the relayer because dispatch of `total_prepaid_nonces` /// messages has been paid at the source chain. fn compute_prepaid_messages_refund( total_prepaid_nonces: MessageNonce, fee_multiplier: FixedU128, ) -> BalanceOf { fee_multiplier.saturating_mul_int(WeightToFeeOf::::calc( &C::PAY_INBOUND_DISPATCH_FEE_WEIGHT_AT_CHAIN.saturating_mul(total_prepaid_nonces), )) } #[cfg(test)] mod tests { use super::*; use relay_rialto_client::Rialto; use relay_rococo_client::Rococo; use relay_wococo_client::Wococo; #[test] fn prepare_dummy_messages_proof_works() { const DISPATCH_WEIGHT: Weight = 1_000_000; const SIZE: u32 = 1_000; let dummy_proof = prepare_dummy_messages_proof::(1..=10, DISPATCH_WEIGHT, SIZE); assert_eq!(dummy_proof.0, DISPATCH_WEIGHT); assert!( dummy_proof.1.encode().len() as u32 > SIZE, "Expected proof size at least {}. Got: {}", SIZE, dummy_proof.1.encode().len(), ); } #[test] fn convert_target_tokens_to_source_tokens_works() { assert_eq!( convert_target_tokens_to_source_tokens::((150, 100).into(), 1_000), 1_500 ); assert_eq!( convert_target_tokens_to_source_tokens::((50, 100).into(), 1_000), 500 ); assert_eq!( convert_target_tokens_to_source_tokens::((100, 100).into(), 1_000), 1_000 ); } #[test] fn compute_fee_multiplier_returns_sane_results() { let multiplier = FixedU128::saturating_from_rational(1, 1000); let smaller_weight = 1_000_000; let smaller_adjusted_weight_fee = multiplier.saturating_mul_int(WeightToFeeOf::::calc(&smaller_weight)); let larger_weight = smaller_weight + 200_000; let larger_adjusted_weight_fee = multiplier.saturating_mul_int(WeightToFeeOf::::calc(&larger_weight)); assert_eq!( compute_fee_multiplier::( smaller_adjusted_weight_fee, smaller_weight, larger_adjusted_weight_fee, larger_weight, ), multiplier, ); } #[test] fn compute_prepaid_messages_refund_returns_sane_results() { assert!( compute_prepaid_messages_refund::( 10, FixedU128::saturating_from_rational(110, 100), ) > (10 * Rialto::PAY_INBOUND_DISPATCH_FEE_WEIGHT_AT_CHAIN).into() ); } }