// Copyright 2019-2020 Parity Technologies (UK) Ltd.
// This file is part of Parity Bridges Common.
// Parity Bridges Common is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity Bridges Common is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity Bridges Common. If not, see .
//! Everything about incoming messages receival.
use bp_messages::{
target_chain::{DispatchMessage, DispatchMessageData, MessageDispatch},
InboundLaneData, LaneId, MessageKey, MessageNonce, OutboundLaneData,
};
use sp_std::prelude::PartialEq;
/// Inbound lane storage.
pub trait InboundLaneStorage {
/// Delivery and dispatch fee type on source chain.
type MessageFee;
/// Id of relayer on source chain.
type Relayer: PartialEq;
/// Lane id.
fn id(&self) -> LaneId;
/// Return maximal number of unrewarded relayer entries in inbound lane.
fn max_unrewarded_relayer_entries(&self) -> MessageNonce;
/// Return maximal number of unconfirmed messages in inbound lane.
fn max_unconfirmed_messages(&self) -> MessageNonce;
/// Get lane data from the storage.
fn data(&self) -> InboundLaneData;
/// Update lane data in the storage.
fn set_data(&mut self, data: InboundLaneData);
}
/// Inbound messages lane.
pub struct InboundLane {
storage: S,
}
impl InboundLane {
/// Create new inbound lane backed by given storage.
pub fn new(storage: S) -> Self {
InboundLane { storage }
}
/// Receive state of the corresponding outbound lane.
pub fn receive_state_update(&mut self, outbound_lane_data: OutboundLaneData) -> Option {
let mut data = self.storage.data();
let last_delivered_nonce = data.last_delivered_nonce();
if outbound_lane_data.latest_received_nonce > last_delivered_nonce {
// this is something that should never happen if proofs are correct
return None;
}
if outbound_lane_data.latest_received_nonce <= data.last_confirmed_nonce {
return None;
}
let new_confirmed_nonce = outbound_lane_data.latest_received_nonce;
data.last_confirmed_nonce = new_confirmed_nonce;
// Firstly, remove all of the records where higher nonce <= new confirmed nonce
while data
.relayers
.front()
.map(|(_, nonce_high, _)| *nonce_high <= new_confirmed_nonce)
.unwrap_or(false)
{
data.relayers.pop_front();
}
// Secondly, update the next record with lower nonce equal to new confirmed nonce if needed.
// Note: There will be max. 1 record to update as we don't allow messages from relayers to overlap.
match data.relayers.front_mut() {
Some((nonce_low, _, _)) if *nonce_low < new_confirmed_nonce => {
*nonce_low = new_confirmed_nonce + 1;
}
_ => {}
}
self.storage.set_data(data);
Some(outbound_lane_data.latest_received_nonce)
}
/// Receive new message.
pub fn receive_message>(
&mut self,
relayer: S::Relayer,
nonce: MessageNonce,
message_data: DispatchMessageData,
) -> bool {
let mut data = self.storage.data();
let is_correct_message = nonce == data.last_delivered_nonce() + 1;
if !is_correct_message {
return false;
}
// if there are more unrewarded relayer entries than we may accept, reject this message
if data.relayers.len() as MessageNonce >= self.storage.max_unrewarded_relayer_entries() {
return false;
}
// if there are more unconfirmed messages than we may accept, reject this message
let unconfirmed_messages_count = nonce.saturating_sub(data.last_confirmed_nonce);
if unconfirmed_messages_count > self.storage.max_unconfirmed_messages() {
return false;
}
let push_new = match data.relayers.back_mut() {
Some((_, nonce_high, last_relayer)) if last_relayer == &relayer => {
*nonce_high = nonce;
false
}
_ => true,
};
if push_new {
data.relayers.push_back((nonce, nonce, relayer));
}
self.storage.set_data(data);
P::dispatch(DispatchMessage {
key: MessageKey {
lane_id: self.storage.id(),
nonce,
},
data: message_data,
});
true
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{
inbound_lane,
mock::{
message_data, run_test, TestMessageDispatch, TestRuntime, REGULAR_PAYLOAD, TEST_LANE_ID, TEST_RELAYER_A,
TEST_RELAYER_B, TEST_RELAYER_C,
},
DefaultInstance, RuntimeInboundLaneStorage,
};
fn receive_regular_message(
lane: &mut InboundLane>,
nonce: MessageNonce,
) {
assert!(lane.receive_message::(
TEST_RELAYER_A,
nonce,
message_data(REGULAR_PAYLOAD).into()
));
}
#[test]
fn receive_status_update_ignores_status_from_the_future() {
run_test(|| {
let mut lane = inbound_lane::(TEST_LANE_ID);
receive_regular_message(&mut lane, 1);
assert_eq!(
lane.receive_state_update(OutboundLaneData {
latest_received_nonce: 10,
..Default::default()
}),
None,
);
assert_eq!(lane.storage.data().last_confirmed_nonce, 0);
});
}
#[test]
fn receive_status_update_ignores_obsolete_status() {
run_test(|| {
let mut lane = inbound_lane::(TEST_LANE_ID);
receive_regular_message(&mut lane, 1);
receive_regular_message(&mut lane, 2);
receive_regular_message(&mut lane, 3);
assert_eq!(
lane.receive_state_update(OutboundLaneData {
latest_received_nonce: 3,
..Default::default()
}),
Some(3),
);
assert_eq!(lane.storage.data().last_confirmed_nonce, 3);
assert_eq!(
lane.receive_state_update(OutboundLaneData {
latest_received_nonce: 3,
..Default::default()
}),
None,
);
assert_eq!(lane.storage.data().last_confirmed_nonce, 3);
});
}
#[test]
fn receive_status_update_works() {
run_test(|| {
let mut lane = inbound_lane::(TEST_LANE_ID);
receive_regular_message(&mut lane, 1);
receive_regular_message(&mut lane, 2);
receive_regular_message(&mut lane, 3);
assert_eq!(lane.storage.data().last_confirmed_nonce, 0);
assert_eq!(lane.storage.data().relayers, vec![(1, 3, TEST_RELAYER_A)]);
assert_eq!(
lane.receive_state_update(OutboundLaneData {
latest_received_nonce: 2,
..Default::default()
}),
Some(2),
);
assert_eq!(lane.storage.data().last_confirmed_nonce, 2);
assert_eq!(lane.storage.data().relayers, vec![(3, 3, TEST_RELAYER_A)]);
assert_eq!(
lane.receive_state_update(OutboundLaneData {
latest_received_nonce: 3,
..Default::default()
}),
Some(3),
);
assert_eq!(lane.storage.data().last_confirmed_nonce, 3);
assert_eq!(lane.storage.data().relayers, vec![]);
});
}
#[test]
fn receive_status_update_works_with_batches_from_relayers() {
run_test(|| {
let mut lane = inbound_lane::(TEST_LANE_ID);
let mut seed_storage_data = lane.storage.data();
// Prepare data
seed_storage_data.last_confirmed_nonce = 0;
seed_storage_data.relayers.push_back((1, 1, TEST_RELAYER_A));
// Simulate messages batch (2, 3, 4) from relayer #2
seed_storage_data.relayers.push_back((2, 4, TEST_RELAYER_B));
seed_storage_data.relayers.push_back((5, 5, TEST_RELAYER_C));
lane.storage.set_data(seed_storage_data);
// Check
assert_eq!(
lane.receive_state_update(OutboundLaneData {
latest_received_nonce: 3,
..Default::default()
}),
Some(3),
);
assert_eq!(lane.storage.data().last_confirmed_nonce, 3);
assert_eq!(
lane.storage.data().relayers,
vec![(4, 4, TEST_RELAYER_B), (5, 5, TEST_RELAYER_C)]
);
});
}
#[test]
fn fails_to_receive_message_with_incorrect_nonce() {
run_test(|| {
let mut lane = inbound_lane::(TEST_LANE_ID);
assert!(!lane.receive_message::(
TEST_RELAYER_A,
10,
message_data(REGULAR_PAYLOAD).into()
));
assert_eq!(lane.storage.data().last_delivered_nonce(), 0);
});
}
#[test]
fn fails_to_receive_messages_above_unrewarded_relayer_entries_limit_per_lane() {
run_test(|| {
let mut lane = inbound_lane::(TEST_LANE_ID);
let max_nonce = ::MaxUnrewardedRelayerEntriesAtInboundLane::get();
for current_nonce in 1..max_nonce + 1 {
assert!(lane.receive_message::(
TEST_RELAYER_A + current_nonce,
current_nonce,
message_data(REGULAR_PAYLOAD).into()
));
}
// Fails to dispatch new message from different than latest relayer.
assert_eq!(
false,
lane.receive_message::(
TEST_RELAYER_A + max_nonce + 1,
max_nonce + 1,
message_data(REGULAR_PAYLOAD).into()
)
);
// Fails to dispatch new messages from latest relayer. Prevents griefing attacks.
assert_eq!(
false,
lane.receive_message::(
TEST_RELAYER_A + max_nonce,
max_nonce + 1,
message_data(REGULAR_PAYLOAD).into()
)
);
});
}
#[test]
fn fails_to_receive_messages_above_unconfirmed_messages_limit_per_lane() {
run_test(|| {
let mut lane = inbound_lane::(TEST_LANE_ID);
let max_nonce = ::MaxUnconfirmedMessagesAtInboundLane::get();
for current_nonce in 1..=max_nonce {
assert!(lane.receive_message::(
TEST_RELAYER_A,
current_nonce,
message_data(REGULAR_PAYLOAD).into()
));
}
// Fails to dispatch new message from different than latest relayer.
assert_eq!(
false,
lane.receive_message::(
TEST_RELAYER_B,
max_nonce + 1,
message_data(REGULAR_PAYLOAD).into()
)
);
// Fails to dispatch new messages from latest relayer.
assert_eq!(
false,
lane.receive_message::(
TEST_RELAYER_A,
max_nonce + 1,
message_data(REGULAR_PAYLOAD).into()
)
);
});
}
#[test]
fn correctly_receives_following_messages_from_two_relayers_alternately() {
run_test(|| {
let mut lane = inbound_lane::(TEST_LANE_ID);
assert!(lane.receive_message::(
TEST_RELAYER_A,
1,
message_data(REGULAR_PAYLOAD).into()
));
assert!(lane.receive_message::(
TEST_RELAYER_B,
2,
message_data(REGULAR_PAYLOAD).into()
));
assert!(lane.receive_message::(
TEST_RELAYER_A,
3,
message_data(REGULAR_PAYLOAD).into()
));
assert_eq!(
lane.storage.data().relayers,
vec![(1, 1, TEST_RELAYER_A), (2, 2, TEST_RELAYER_B), (3, 3, TEST_RELAYER_A)]
);
});
}
#[test]
fn rejects_same_message_from_two_different_relayers() {
run_test(|| {
let mut lane = inbound_lane::(TEST_LANE_ID);
assert!(lane.receive_message::(
TEST_RELAYER_A,
1,
message_data(REGULAR_PAYLOAD).into()
));
assert_eq!(
false,
lane.receive_message::(TEST_RELAYER_B, 1, message_data(REGULAR_PAYLOAD).into())
);
});
}
#[test]
fn correct_message_is_processed_instantly() {
run_test(|| {
let mut lane = inbound_lane::(TEST_LANE_ID);
receive_regular_message(&mut lane, 1);
assert_eq!(lane.storage.data().last_delivered_nonce(), 1);
});
}
}