Newer
Older
// Copyright 2019-2020 Parity Technologies (UK) Ltd.
// This file is part of Parity Bridges Common.
// Parity Bridges Common is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity Bridges Common is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity Bridges Common. If not, see <http://www.gnu.org/licenses/>.
//! Everything about incoming messages receival.
use bp_message_lane::{
target_chain::{DispatchMessage, DispatchMessageData, MessageDispatch},
InboundLaneData, LaneId, MessageKey, MessageNonce, OutboundLaneData,
use sp_std::prelude::PartialEq;
/// Inbound lane storage.
pub trait InboundLaneStorage {
/// Delivery and dispatch fee type on source chain.
type MessageFee;
/// Id of relayer on source chain.
type Relayer: PartialEq;
/// Lane id.
fn id(&self) -> LaneId;
/// Return maximal number of unrewarded relayer entries in inbound lane.
fn max_unrewarded_relayer_entries(&self) -> MessageNonce;
/// Return maximal number of unconfirmed messages in inbound lane.
fn max_unconfirmed_messages(&self) -> MessageNonce;
/// Get lane data from the storage.
fn data(&self) -> InboundLaneData<Self::Relayer>;
/// Update lane data in the storage.
fn set_data(&mut self, data: InboundLaneData<Self::Relayer>);
}
/// Inbound messages lane.
pub struct InboundLane<S> {
storage: S,
}
impl<S: InboundLaneStorage> InboundLane<S> {
/// Create new inbound lane backed by given storage.
pub fn new(storage: S) -> Self {
InboundLane { storage }
}
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
/// Receive state of the corresponding outbound lane.
pub fn receive_state_update(&mut self, outbound_lane_data: OutboundLaneData) -> Option<MessageNonce> {
let mut data = self.storage.data();
if outbound_lane_data.latest_received_nonce > data.latest_received_nonce {
// this is something that should never happen if proofs are correct
return None;
}
if outbound_lane_data.latest_received_nonce <= data.latest_confirmed_nonce {
return None;
}
data.latest_confirmed_nonce = outbound_lane_data.latest_received_nonce;
// Firstly, remove all of the records where higher nonce <= new confirmed nonce
while data
.relayers
.front()
.map(|(_, nonce_high, _)| *nonce_high <= data.latest_confirmed_nonce)
.unwrap_or(false)
{
data.relayers.pop_front();
}
// Secondly, update the next record with lower nonce equal to new confirmed nonce if needed.
// Note: There will be max. 1 record to update as we don't allow messages from relayers to overlap.
match data.relayers.front_mut() {
Some((nonce_low, _, _)) if *nonce_low < data.latest_confirmed_nonce => {
*nonce_low = data.latest_confirmed_nonce + 1;
}
_ => {}
}
self.storage.set_data(data);
Some(outbound_lane_data.latest_received_nonce)
}
/// Receive new message.
pub fn receive_message<P: MessageDispatch<S::MessageFee>>(
relayer: S::Relayer,
message_data: DispatchMessageData<P::DispatchPayload, S::MessageFee>,
) -> bool {
let mut data = self.storage.data();
let is_correct_message = nonce == data.latest_received_nonce + 1;
if !is_correct_message {
return false;
}
// if there are more unrewarded relayer entries than we may accept, reject this message
if data.relayers.len() as MessageNonce >= self.storage.max_unrewarded_relayer_entries() {
return false;
}
// if there are more unconfirmed messages than we may accept, reject this message
let unconfirmed_messages_count = nonce.saturating_sub(data.latest_confirmed_nonce);
if unconfirmed_messages_count > self.storage.max_unconfirmed_messages() {
return false;
}
data.latest_received_nonce = nonce;
let push_new = match data.relayers.back_mut() {
Some((_, nonce_high, last_relayer)) if last_relayer == &relayer => {
*nonce_high = nonce;
false
}
_ => true,
};
if push_new {
data.relayers.push_back((nonce, nonce, relayer));
}
self.storage.set_data(data);
key: MessageKey {
lane_id: self.storage.id(),
nonce,
},
data: message_data,
true
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{
inbound_lane,
mock::{
message_data, run_test, TestMessageDispatch, TestRuntime, REGULAR_PAYLOAD, TEST_LANE_ID, TEST_RELAYER_A,
TEST_RELAYER_B, TEST_RELAYER_C,
},
DefaultInstance, RuntimeInboundLaneStorage,
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
fn receive_regular_message(
lane: &mut InboundLane<RuntimeInboundLaneStorage<TestRuntime, DefaultInstance>>,
nonce: MessageNonce,
) {
assert!(lane.receive_message::<TestMessageDispatch>(
TEST_RELAYER_A,
nonce,
message_data(REGULAR_PAYLOAD).into()
));
}
#[test]
fn receive_status_update_ignores_status_from_the_future() {
run_test(|| {
let mut lane = inbound_lane::<TestRuntime, _>(TEST_LANE_ID);
receive_regular_message(&mut lane, 1);
assert_eq!(
lane.receive_state_update(OutboundLaneData {
latest_received_nonce: 10,
..Default::default()
}),
None,
);
assert_eq!(lane.storage.data().latest_confirmed_nonce, 0);
});
}
#[test]
fn receive_status_update_ignores_obsolete_status() {
run_test(|| {
let mut lane = inbound_lane::<TestRuntime, _>(TEST_LANE_ID);
receive_regular_message(&mut lane, 1);
receive_regular_message(&mut lane, 2);
receive_regular_message(&mut lane, 3);
assert_eq!(
lane.receive_state_update(OutboundLaneData {
latest_received_nonce: 3,
..Default::default()
}),
Some(3),
);
assert_eq!(lane.storage.data().latest_confirmed_nonce, 3);
assert_eq!(
lane.receive_state_update(OutboundLaneData {
latest_received_nonce: 3,
..Default::default()
}),
None,
);
assert_eq!(lane.storage.data().latest_confirmed_nonce, 3);
});
}
#[test]
fn receive_status_update_works() {
run_test(|| {
let mut lane = inbound_lane::<TestRuntime, _>(TEST_LANE_ID);
receive_regular_message(&mut lane, 1);
receive_regular_message(&mut lane, 2);
receive_regular_message(&mut lane, 3);
assert_eq!(lane.storage.data().latest_confirmed_nonce, 0);
assert_eq!(lane.storage.data().relayers, vec![(1, 3, TEST_RELAYER_A)]);
assert_eq!(
lane.receive_state_update(OutboundLaneData {
latest_received_nonce: 2,
..Default::default()
}),
Some(2),
);
assert_eq!(lane.storage.data().latest_confirmed_nonce, 2);
assert_eq!(lane.storage.data().relayers, vec![(3, 3, TEST_RELAYER_A)]);
assert_eq!(
lane.receive_state_update(OutboundLaneData {
latest_received_nonce: 3,
..Default::default()
}),
Some(3),
);
assert_eq!(lane.storage.data().latest_confirmed_nonce, 3);
assert_eq!(lane.storage.data().relayers, vec![]);
});
}
#[test]
fn receive_status_update_works_with_batches_from_relayers() {
run_test(|| {
let mut lane = inbound_lane::<TestRuntime, _>(TEST_LANE_ID);
let mut seed_storage_data = lane.storage.data();
// Prepare data
seed_storage_data.latest_confirmed_nonce = 0;
seed_storage_data.latest_received_nonce = 5;
seed_storage_data.relayers.push_back((1, 1, TEST_RELAYER_A));
// Simulate messages batch (2, 3, 4) from relayer #2
seed_storage_data.relayers.push_back((2, 4, TEST_RELAYER_B));
seed_storage_data.relayers.push_back((5, 5, TEST_RELAYER_C));
lane.storage.set_data(seed_storage_data);
// Check
assert_eq!(
lane.receive_state_update(OutboundLaneData {
latest_received_nonce: 3,
..Default::default()
}),
Some(3),
);
assert_eq!(lane.storage.data().latest_confirmed_nonce, 3);
assert_eq!(
lane.storage.data().relayers,
vec![(4, 4, TEST_RELAYER_B), (5, 5, TEST_RELAYER_C)]
);
});
}
#[test]
fn fails_to_receive_message_with_incorrect_nonce() {
run_test(|| {
let mut lane = inbound_lane::<TestRuntime, _>(TEST_LANE_ID);
assert!(!lane.receive_message::<TestMessageDispatch>(
TEST_RELAYER_A,
10,
message_data(REGULAR_PAYLOAD).into()
));
assert_eq!(lane.storage.data().latest_received_nonce, 0);
});
}
fn fails_to_receive_messages_above_unrewarded_relayer_entries_limit_per_lane() {
run_test(|| {
let mut lane = inbound_lane::<TestRuntime, _>(TEST_LANE_ID);
let max_nonce = <TestRuntime as crate::Config>::MaxUnrewardedRelayerEntriesAtInboundLane::get();
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
for current_nonce in 1..max_nonce + 1 {
assert!(lane.receive_message::<TestMessageDispatch>(
TEST_RELAYER_A + current_nonce,
current_nonce,
message_data(REGULAR_PAYLOAD).into()
));
}
// Fails to dispatch new message from different than latest relayer.
assert_eq!(
false,
lane.receive_message::<TestMessageDispatch>(
TEST_RELAYER_A + max_nonce + 1,
max_nonce + 1,
message_data(REGULAR_PAYLOAD).into()
)
);
// Fails to dispatch new messages from latest relayer. Prevents griefing attacks.
assert_eq!(
false,
lane.receive_message::<TestMessageDispatch>(
TEST_RELAYER_A + max_nonce,
max_nonce + 1,
message_data(REGULAR_PAYLOAD).into()
)
);
});
}
#[test]
fn fails_to_receive_messages_above_unconfirmed_messages_limit_per_lane() {
run_test(|| {
let mut lane = inbound_lane::<TestRuntime, _>(TEST_LANE_ID);
let max_nonce = <TestRuntime as crate::Config>::MaxUnconfirmedMessagesAtInboundLane::get();
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
for current_nonce in 1..=max_nonce {
assert!(lane.receive_message::<TestMessageDispatch>(
TEST_RELAYER_A,
current_nonce,
message_data(REGULAR_PAYLOAD).into()
));
}
// Fails to dispatch new message from different than latest relayer.
assert_eq!(
false,
lane.receive_message::<TestMessageDispatch>(
TEST_RELAYER_B,
max_nonce + 1,
message_data(REGULAR_PAYLOAD).into()
)
);
// Fails to dispatch new messages from latest relayer.
assert_eq!(
false,
lane.receive_message::<TestMessageDispatch>(
TEST_RELAYER_A,
max_nonce + 1,
message_data(REGULAR_PAYLOAD).into()
)
);
});
}
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
#[test]
fn correctly_receives_following_messages_from_two_relayers_alternately() {
run_test(|| {
let mut lane = inbound_lane::<TestRuntime, _>(TEST_LANE_ID);
assert!(lane.receive_message::<TestMessageDispatch>(
TEST_RELAYER_A,
1,
message_data(REGULAR_PAYLOAD).into()
));
assert!(lane.receive_message::<TestMessageDispatch>(
TEST_RELAYER_B,
2,
message_data(REGULAR_PAYLOAD).into()
));
assert!(lane.receive_message::<TestMessageDispatch>(
TEST_RELAYER_A,
3,
message_data(REGULAR_PAYLOAD).into()
));
assert_eq!(
lane.storage.data().relayers,
vec![(1, 1, TEST_RELAYER_A), (2, 2, TEST_RELAYER_B), (3, 3, TEST_RELAYER_A)]
);
});
}
#[test]
fn rejects_same_message_from_two_different_relayers() {
run_test(|| {
let mut lane = inbound_lane::<TestRuntime, _>(TEST_LANE_ID);
assert!(lane.receive_message::<TestMessageDispatch>(
TEST_RELAYER_A,
1,
message_data(REGULAR_PAYLOAD).into()
));
assert_eq!(
false,
lane.receive_message::<TestMessageDispatch>(TEST_RELAYER_B, 1, message_data(REGULAR_PAYLOAD).into())
);
});
}
fn correct_message_is_processed_instantly() {
run_test(|| {
let mut lane = inbound_lane::<TestRuntime, _>(TEST_LANE_ID);
receive_regular_message(&mut lane, 1);
assert_eq!(lane.storage.data().latest_received_nonce, 1);
});
}
}