Newer
Older
// Copyright 2019-2021 Parity Technologies (UK) Ltd.
// This file is part of Parity Bridges Common.
// Parity Bridges Common is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Parity Bridges Common is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Parity Bridges Common. If not, see <http://www.gnu.org/licenses/>.
//! Primitives of messages module.
#![cfg_attr(not(feature = "std"), no_std)]
// RuntimeApi generated functions
#![allow(clippy::too_many_arguments)]
// Generated by `DecodeLimit::decode_with_depth_limit`
#![allow(clippy::unnecessary_mut_passed)]
Svyatoslav Nikolsky
committed
use bitvec::prelude::*;
use bp_runtime::messages::DispatchFeePayment;
use codec::{Decode, Encode};
use frame_support::RuntimeDebug;
use sp_std::{collections::vec_deque::VecDeque, prelude::*};
pub mod source_chain;
pub mod storage_keys;
pub mod target_chain;
// Weight is reexported to avoid additional frame-support dependencies in related crates.
pub use frame_support::weights::Weight;
/// Messages pallet operating mode.
#[derive(Encode, Decode, Clone, Copy, PartialEq, Eq, RuntimeDebug, TypeInfo)]
#[cfg_attr(feature = "std", derive(serde::Serialize, serde::Deserialize))]
pub enum OperatingMode {
/// Normal mode, when all operations are allowed.
Normal,
/// The pallet is not accepting outbound messages. Inbound messages and receival proofs
/// are still accepted.
///
/// This mode may be used e.g. when bridged chain expects upgrade. Then to avoid dispatch
/// failures, the pallet owner may stop accepting new messages, while continuing to deliver
/// queued messages to the bridged chain. Once upgrade is completed, the mode may be switched
/// back to `Normal`.
RejectingOutboundMessages,
/// The pallet is halted. All operations (except operating mode change) are prohibited.
Halted,
}
impl Default for OperatingMode {
fn default() -> Self {
OperatingMode::Normal
}
}
/// Messages pallet parameter.
pub trait Parameter: frame_support::Parameter {
/// Save parameter value in the runtime storage.
fn save(&self);
}
impl Parameter for () {
fn save(&self) {}
}
/// Lane identifier.
pub type LaneId = [u8; 4];
/// Message nonce. Valid messages will never have 0 nonce.
pub type MessageNonce = u64;
/// Message id as a tuple.
pub type BridgeMessageId = (LaneId, MessageNonce);
/// Opaque message payload. We only decode this payload when it is dispatched.
pub type MessagePayload = Vec<u8>;
/// Message key (unique message identifier) as it is stored in the storage.
#[derive(Encode, Decode, Clone, PartialEq, Eq, RuntimeDebug, TypeInfo)]
pub struct MessageKey {
/// ID of the message lane.
pub lane_id: LaneId,
/// Message nonce.
pub nonce: MessageNonce,
}
/// Message data as it is stored in the storage.
#[derive(Encode, Decode, Clone, PartialEq, Eq, RuntimeDebug, TypeInfo)]
/// Message delivery and dispatch fee, paid by the submitter.
pub fee: Fee,
/// Message as it is stored in the storage.
#[derive(Encode, Decode, Clone, PartialEq, Eq, RuntimeDebug, TypeInfo)]
/// Message key.
pub key: MessageKey,
/// Message data.
}
/// Inbound lane data.
#[derive(Encode, Decode, Clone, RuntimeDebug, PartialEq, Eq, TypeInfo)]
pub struct InboundLaneData<RelayerId> {
/// Identifiers of relayers and messages that they have delivered to this lane (ordered by
/// message nonce).
///
/// This serves as a helper storage item, to allow the source chain to easily pay rewards
/// to the relayers who successfully delivered messages to the target chain (inbound lane).
///
/// It is guaranteed to have at most N entries, where N is configured at the module level.
/// If there are N entries in this vec, then:
/// 1) all incoming messages are rejected if they're missing corresponding
/// `proof-of(outbound-lane.state)`; 2) all incoming messages are rejected if
/// `proof-of(outbound-lane.state).last_delivered_nonce` is equal to
/// `self.last_confirmed_nonce`. Given what is said above, all nonces in this queue are in
/// range: `(self.last_confirmed_nonce; self.last_delivered_nonce()]`.
///
/// When a relayer sends a single message, both of MessageNonces are the same.
/// When relayer sends messages in a batch, the first arg is the lowest nonce, second arg the
/// highest nonce. Multiple dispatches from the same relayer are allowed.
Svyatoslav Nikolsky
committed
pub relayers: VecDeque<UnrewardedRelayer<RelayerId>>,
/// Nonce of the last message that
/// a) has been delivered to the target (this) chain and
/// b) the delivery has been confirmed on the source chain
///
/// that the target chain knows of.
///
/// This value is updated indirectly when an `OutboundLane` state of the source
/// chain is received alongside with new messages delivery.
pub last_confirmed_nonce: MessageNonce,
}
impl<RelayerId> Default for InboundLaneData<RelayerId> {
fn default() -> Self {
InboundLaneData { relayers: VecDeque::new(), last_confirmed_nonce: 0 }
impl<RelayerId> InboundLaneData<RelayerId> {
/// Returns approximate size of the struct, given a number of entries in the `relayers` set and
/// size of each entry.
///
/// Returns `None` if size overflows `u32` limits.
pub fn encoded_size_hint(
relayer_id_encoded_size: u32,
relayers_entries: u32,
messages_count: u32,
) -> Option<u32> {
let message_nonce_size = 8;
let relayers_entry_size = relayer_id_encoded_size.checked_add(2 * message_nonce_size)?;
let relayers_size = relayers_entries.checked_mul(relayers_entry_size)?;
Svyatoslav Nikolsky
committed
let dispatch_results_per_byte = 8;
let dispatch_result_size =
sp_std::cmp::max(relayers_entries, messages_count / dispatch_results_per_byte);
Svyatoslav Nikolsky
committed
relayers_size
.checked_add(message_nonce_size)
.and_then(|result| result.checked_add(dispatch_result_size))
}
/// Nonce of the last message that has been delivered to this (target) chain.
pub fn last_delivered_nonce(&self) -> MessageNonce {
self.relayers
.back()
Svyatoslav Nikolsky
committed
.map(|entry| entry.messages.end)
.unwrap_or(self.last_confirmed_nonce)
}
}
/// Message details, returned by runtime APIs.
#[derive(Clone, Encode, Decode, RuntimeDebug, PartialEq, Eq)]
pub struct MessageDetails<OutboundMessageFee> {
/// Nonce assigned to the message.
pub nonce: MessageNonce,
/// Message dispatch weight, declared by the submitter.
pub dispatch_weight: Weight,
/// Size of the encoded message.
pub size: u32,
/// Delivery+dispatch fee paid by the message submitter at the source chain.
pub delivery_and_dispatch_fee: OutboundMessageFee,
/// Where the fee for dispatching message is paid?
pub dispatch_fee_payment: DispatchFeePayment,
Svyatoslav Nikolsky
committed
/// Bit vector of message dispatch results.
pub type DispatchResultsBitVec = BitVec<u8, Msb0>;
Svyatoslav Nikolsky
committed
/// Unrewarded relayer entry stored in the inbound lane data.
///
/// This struct represents a continuous range of messages that have been delivered by the same
/// relayer and whose confirmations are still pending.
#[derive(Encode, Decode, Clone, RuntimeDebug, PartialEq, Eq, TypeInfo)]
Svyatoslav Nikolsky
committed
pub struct UnrewardedRelayer<RelayerId> {
/// Identifier of the relayer.
pub relayer: RelayerId,
/// Messages range, delivered by this relayer.
pub messages: DeliveredMessages,
}
/// Delivered messages with their dispatch result.
#[derive(Clone, Default, Encode, Decode, RuntimeDebug, PartialEq, Eq, TypeInfo)]
Svyatoslav Nikolsky
committed
pub struct DeliveredMessages {
/// Nonce of the first message that has been delivered (inclusive).
pub begin: MessageNonce,
/// Nonce of the last message that has been delivered (inclusive).
pub end: MessageNonce,
/// Dispatch result (`false`/`true`), returned by the message dispatcher for every
/// message in the `[begin; end]` range. See `dispatch_result` field of the
/// `bp_runtime::messages::MessageDispatchResult` structure for more information.
pub dispatch_results: DispatchResultsBitVec,
}
impl DeliveredMessages {
/// Create new `DeliveredMessages` struct that confirms delivery of single nonce with given
/// dispatch result.
Svyatoslav Nikolsky
committed
pub fn new(nonce: MessageNonce, dispatch_result: bool) -> Self {
let mut dispatch_results = BitVec::with_capacity(1);
dispatch_results.push(if dispatch_result { true } else { false });
DeliveredMessages { begin: nonce, end: nonce, dispatch_results }
Svyatoslav Nikolsky
committed
}
/// Return total count of delivered messages.
pub fn total_messages(&self) -> MessageNonce {
if self.end >= self.begin {
self.end - self.begin + 1
} else {
0
}
}
Svyatoslav Nikolsky
committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
/// Note new dispatched message.
pub fn note_dispatched_message(&mut self, dispatch_result: bool) {
self.end += 1;
self.dispatch_results.push(dispatch_result);
}
/// Returns true if delivered messages contain message with given nonce.
pub fn contains_message(&self, nonce: MessageNonce) -> bool {
(self.begin..=self.end).contains(&nonce)
}
/// Get dispatch result flag by message nonce.
///
/// Dispatch result flag must be interpreted using the knowledge of dispatch mechanism
/// at the target chain. See `dispatch_result` field of the
/// `bp_runtime::messages::MessageDispatchResult` structure for more information.
///
/// Panics if message nonce is not in the `begin..=end` range. Typically you'll first
/// check if message is within the range by calling `contains_message`.
pub fn message_dispatch_result(&self, nonce: MessageNonce) -> bool {
const INVALID_NONCE: &str = "Invalid nonce used to index dispatch_results";
let index = nonce.checked_sub(self.begin).expect(INVALID_NONCE) as usize;
*self.dispatch_results.get(index).expect(INVALID_NONCE)
}
}
/// Gist of `InboundLaneData::relayers` field used by runtime APIs.
#[derive(Clone, Default, Encode, Decode, RuntimeDebug, PartialEq, Eq, TypeInfo)]
pub struct UnrewardedRelayersState {
/// Number of entries in the `InboundLaneData::relayers` set.
pub unrewarded_relayer_entries: MessageNonce,
/// Number of messages in the oldest entry of `InboundLaneData::relayers`. This is the
/// minimal number of reward proofs required to push out this entry from the set.
pub messages_in_oldest_entry: MessageNonce,
Svyatoslav Nikolsky
committed
/// Total number of messages in the relayers vector.
pub total_messages: MessageNonce,
}
/// Outbound lane data.
#[derive(Encode, Decode, Clone, RuntimeDebug, PartialEq, Eq, TypeInfo)]
pub struct OutboundLaneData {
/// Nonce of the oldest message that we haven't yet pruned. May point to not-yet-generated
/// message if all sent messages are already pruned.
pub oldest_unpruned_nonce: MessageNonce,
/// Nonce of the latest message, received by bridged chain.
pub latest_received_nonce: MessageNonce,
/// Nonce of the latest message, generated by us.
pub latest_generated_nonce: MessageNonce,
}
impl Default for OutboundLaneData {
fn default() -> Self {
OutboundLaneData {
// it is 1 because we're pruning everything in [oldest_unpruned_nonce;
// latest_received_nonce]
oldest_unpruned_nonce: 1,
latest_received_nonce: 0,
latest_generated_nonce: 0,
}
}
}
Svyatoslav Nikolsky
committed
/// Returns total number of messages in the `InboundLaneData::relayers` vector.
///
/// Returns `None` if there are more messages that `MessageNonce` may fit (i.e. `MessageNonce + 1`).
pub fn total_unrewarded_messages<RelayerId>(
relayers: &VecDeque<UnrewardedRelayer<RelayerId>>,
) -> Option<MessageNonce> {
Svyatoslav Nikolsky
committed
match (relayers.front(), relayers.back()) {
Svyatoslav Nikolsky
committed
(Some(front), Some(back)) => {
if let Some(difference) = back.messages.end.checked_sub(front.messages.begin) {
difference.checked_add(1)
} else {
Some(0)
}
_ => Some(0),
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn total_unrewarded_messages_does_not_overflow() {
assert_eq!(
total_unrewarded_messages(
Svyatoslav Nikolsky
committed
&vec![
UnrewardedRelayer { relayer: 1, messages: DeliveredMessages::new(0, true) },
Svyatoslav Nikolsky
committed
UnrewardedRelayer {
relayer: 2,
messages: DeliveredMessages::new(MessageNonce::MAX, true)
},
]
.into_iter()
.collect()
Svyatoslav Nikolsky
committed
}
#[test]
fn inbound_lane_data_returns_correct_hint() {
Svyatoslav Nikolsky
committed
let test_cases = vec![
// single relayer, multiple messages
(1, 128u8),
// multiple relayers, single message per relayer
(128u8, 128u8),
// several messages per relayer
(13u8, 128u8),
];
for (relayer_entries, messages_count) in test_cases {
let expected_size = InboundLaneData::<u8>::encoded_size_hint(
1,
relayer_entries as _,
messages_count as _,
);
Svyatoslav Nikolsky
committed
let actual_size = InboundLaneData {
relayers: (1u8..=relayer_entries)
.map(|i| {
let mut entry = UnrewardedRelayer {
relayer: i,
messages: DeliveredMessages::new(i as _, true),
};
entry.messages.dispatch_results = bitvec![
Svyatoslav Nikolsky
committed
1;
(messages_count / relayer_entries) as _
];
entry
})
.collect(),
last_confirmed_nonce: messages_count as _,
}
.encode()
.len();
let difference = (expected_size.unwrap() as f64 - actual_size as f64).abs();
assert!(
difference / (std::cmp::min(actual_size, expected_size.unwrap() as usize) as f64) < 0.1,
"Too large difference between actual ({}) and expected ({:?}) inbound lane data size. Test case: {}+{}",
actual_size,
expected_size,
relayer_entries,
messages_count,
);
}
Svyatoslav Nikolsky
committed
}
#[test]
fn message_dispatch_result_works() {
DeliveredMessages { begin: 100, end: 150, dispatch_results: bitvec![u8, Msb0; 1; 151] };
Svyatoslav Nikolsky
committed
assert!(!delivered_messages.contains_message(99));
assert!(delivered_messages.contains_message(100));
assert!(delivered_messages.contains_message(150));
assert!(!delivered_messages.contains_message(151));
assert!(delivered_messages.message_dispatch_result(125));