mod.rs 11.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
// Copyright 2018-2020 Parity Technologies (UK) Ltd.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#[cfg(test)]
mod tests;

use crate::utils::serialize_as_byte_str;
use derive_more::From;
use ink_prelude::collections::btree_map::BTreeMap;
use ink_primitives::Key;
use scale_info::{
    form::{
        CompactForm,
        Form,
        MetaForm,
    },
    IntoCompact,
    Metadata,
    Registry,
};

/// Represents the static storage layout of an ink! smart contract.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, From, serde::Serialize)]
#[serde(bound = "F::TypeId: serde::Serialize")]
pub enum Layout<F: Form = MetaForm> {
    /// An encoded cell.
    ///
    /// This is the only leaf node within the layout graph.
    /// All layout nodes have this node type as their leafs.
    ///
    /// This represents the encoding of a single cell mapped to a single key.
    Cell(CellLayout<F>),
    /// A layout that hashes values into the entire storage key space.
    ///
    /// This is commonly used by ink! hashmaps and similar data structures.
    Hash(HashLayout<F>),
    /// An array of associated storage cells encoded with a given type.
    ///
    /// This can also represent only a single cell.
    Array(ArrayLayout<F>),
    /// A struct layout with fields of different types.
    Struct(StructLayout<F>),
    /// An enum layout with a discriminant telling which variant is layed out.
    Enum(EnumLayout<F>),
}

/// A pointer into some storage region.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, serde::Serialize)]
#[serde(transparent)]
pub struct LayoutKey {
    #[serde(serialize_with = "serialize_as_byte_str")]
    key: [u8; 32],
}

66
67
68
69
70
71
72
73
impl<'a> From<&'a Key> for LayoutKey {
    fn from(key: &'a Key) -> Self {
        Self {
            key: key.to_bytes(),
        }
    }
}

74
75
impl From<Key> for LayoutKey {
    fn from(key: Key) -> Self {
76
77
78
        Self {
            key: key.to_bytes(),
        }
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
    }
}

/// An encoded cell.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, From, serde::Serialize)]
#[serde(bound = "F::TypeId: serde::Serialize")]
pub struct CellLayout<F: Form = MetaForm> {
    /// The offset key into the storage.
    key: LayoutKey,
    /// The type of the encoded entity.
    ty: <F as Form>::TypeId,
}

impl CellLayout {
    /// Creates a new cell layout.
    pub fn new<T>(key: LayoutKey) -> Self
    where
        T: Metadata,
    {
        Self {
            key,
            ty: <T as Metadata>::meta_type(),
        }
    }
}

impl IntoCompact for CellLayout {
    type Output = CellLayout<CompactForm>;

    fn into_compact(self, registry: &mut Registry) -> Self::Output {
        CellLayout {
            key: self.key,
            ty: registry.register_type(&self.ty),
        }
    }
}

impl IntoCompact for Layout {
    type Output = Layout<CompactForm>;

    fn into_compact(self, registry: &mut Registry) -> Self::Output {
        match self {
            Layout::Cell(encoded_cell) => {
                Layout::Cell(encoded_cell.into_compact(registry))
            }
            Layout::Hash(hash_layout) => Layout::Hash(hash_layout.into_compact(registry)),
            Layout::Array(array_layout) => {
                Layout::Array(array_layout.into_compact(registry))
            }
            Layout::Struct(struct_layout) => {
                Layout::Struct(struct_layout.into_compact(registry))
            }
            Layout::Enum(enum_layout) => Layout::Enum(enum_layout.into_compact(registry)),
        }
    }
}

/// A hashing layout potentially hitting all cells of the storage.
///
/// Every hashing layout has an offset and a strategy to compute its keys.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, serde::Serialize)]
#[serde(bound = "F::TypeId: serde::Serialize")]
pub struct HashLayout<F: Form = MetaForm> {
    /// The key offset used by the strategy.
    offset: LayoutKey,
    /// The hashing strategy to layout the underlying elements.
    strategy: HashingStrategy,
    /// The storage layout of the unbounded layout elements.
    layout: Box<Layout<F>>,
}

impl HashLayout {
    /// Creates a new unbounded layout.
    pub fn new<K, L>(offset: K, strategy: HashingStrategy, layout: L) -> Self
    where
        K: Into<LayoutKey>,
        L: Into<Layout>,
    {
        Self {
            offset: offset.into(),
            strategy,
            layout: Box::new(layout.into()),
        }
    }
}

impl IntoCompact for HashLayout {
    type Output = HashLayout<CompactForm>;

    fn into_compact(self, registry: &mut Registry) -> Self::Output {
        HashLayout {
            offset: self.offset,
            strategy: self.strategy,
            layout: Box::new(self.layout.into_compact(registry)),
        }
    }
}

/// The unbounded hashing strategy.
///
/// The offset key is used as another postfix for the computation.
/// So the actual formula is: `hasher(prefix + encoded(key) + offset + postfix)`
/// Where `+` in this contexts means append of the byte slices.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, serde::Serialize)]
pub struct HashingStrategy {
    /// One of the supported crypto hashers.
    hasher: CryptoHasher,
    /// An optional prefix to the computed hash.
    #[serde(serialize_with = "serialize_as_byte_str")]
    prefix: Vec<u8>,
    /// An optional postfix to the computed hash.
    #[serde(serialize_with = "serialize_as_byte_str")]
    postfix: Vec<u8>,
}

impl HashingStrategy {
    /// Creates a new unbounded hashing strategy.
    pub fn new(hasher: CryptoHasher, prefix: Vec<u8>, postfix: Vec<u8>) -> Self {
        Self {
            hasher,
            prefix,
            postfix,
        }
    }
}

/// One of the supported crypto hashers.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, serde::Serialize)]
pub enum CryptoHasher {
    /// The BLAKE-2 crypto hasher with an output of 256 bits.
    Blake2x256,
    /// The SHA-2 crypto hasher with an output of 256 bits.
    Sha2x256,
    /// The KECCAK crypto hasher with an output of 256 bits.
    Keccak256,
}

/// A layout for an array of associated cells with the same encoding.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, serde::Serialize)]
#[serde(bound = "F::TypeId: serde::Serialize")]
pub struct ArrayLayout<F: Form = MetaForm> {
    /// The offset key of the array layout.
    ///
    /// This is the same key as the 0-th element of the array layout.
    offset: LayoutKey,
    /// The number of elements in the array layout.
    len: u32,
    /// The number of cells each element in the array layout consists of.
    cells_per_elem: u64,
    /// The layout of the elements stored in the array layout.
    layout: Box<Layout<F>>,
}

impl ArrayLayout {
    /// Creates an array layout with the given length.
    pub fn new<K, L>(at: K, len: u32, cells_per_elem: u64, layout: L) -> Self
    where
        K: Into<LayoutKey>,
        L: Into<Layout>,
    {
        Self {
            offset: at.into(),
            len,
            cells_per_elem,
            layout: Box::new(layout.into()),
        }
    }
}

impl IntoCompact for ArrayLayout {
    type Output = ArrayLayout<CompactForm>;

    fn into_compact(self, registry: &mut Registry) -> Self::Output {
        ArrayLayout {
            offset: self.offset,
            len: self.len,
            cells_per_elem: self.cells_per_elem,
            layout: Box::new(self.layout.into_compact(registry)),
        }
    }
}

/// A struct layout with consecutive fields of different layout.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, serde::Serialize)]
#[serde(bound = "F::TypeId: serde::Serialize")]
pub struct StructLayout<F: Form = MetaForm> {
    /// The fields of the struct layout.
    fields: Vec<FieldLayout<F>>,
}

impl StructLayout {
    /// Creates a new struct layout.
    pub fn new<F>(fields: F) -> Self
    where
        F: IntoIterator<Item = FieldLayout>,
    {
        Self {
            fields: fields.into_iter().collect(),
        }
    }
}

impl IntoCompact for StructLayout {
    type Output = StructLayout<CompactForm>;

    fn into_compact(self, registry: &mut Registry) -> Self::Output {
        StructLayout {
            fields: self
                .fields
                .into_iter()
                .map(|field| field.into_compact(registry))
                .collect::<Vec<_>>(),
        }
    }
}

/// The layout for a particular field of a struct layout.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, serde::Serialize)]
#[serde(bound = "F::TypeId: serde::Serialize")]
pub struct FieldLayout<F: Form = MetaForm> {
    /// The name of the field.
    ///
    /// Can be missing, e.g. in case of an enum tuple struct variant.
    name: Option<F::String>,
    /// The kind of the field.
    ///
    /// This is either a direct layout bound
    /// or another recursive layout sub-struct.
    layout: Layout<F>,
}

impl FieldLayout {
    /// Creates a new field layout.
    pub fn new<N, L>(name: N, layout: L) -> Self
    where
        N: Into<Option<<MetaForm as Form>::String>>,
        L: Into<Layout>,
    {
        Self {
            name: name.into(),
            layout: layout.into(),
        }
    }
}

impl IntoCompact for FieldLayout {
    type Output = FieldLayout<CompactForm>;

    fn into_compact(self, registry: &mut Registry) -> Self::Output {
        FieldLayout {
            name: self.name.map(|name| registry.register_string(name)),
            layout: self.layout.into_compact(registry),
        }
    }
}

/// The discriminant of an enum variant.
#[derive(
    Debug,
    Copy,
    Clone,
    PartialEq,
    Eq,
    PartialOrd,
    Ord,
    serde::Serialize,
    serde::Deserialize,
)]
pub struct Discriminant(usize);

impl From<usize> for Discriminant {
    fn from(value: usize) -> Self {
        Self(value)
    }
}

/// An enum storage layout.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, serde::Serialize)]
#[serde(bound = "F::TypeId: serde::Serialize")]
pub struct EnumLayout<F: Form = MetaForm> {
    /// The key where the discriminant is stored to dispatch the variants.
    dispatch_key: LayoutKey,
    /// The variants of the enum.
    variants: BTreeMap<Discriminant, StructLayout<F>>,
}

impl EnumLayout {
    /// Creates a new enum layout.
    pub fn new<K, V>(dispatch_key: K, variants: V) -> Self
    where
        K: Into<LayoutKey>,
        V: IntoIterator<Item = (Discriminant, StructLayout)>,
    {
        Self {
            dispatch_key: dispatch_key.into(),
            variants: variants.into_iter().collect(),
        }
    }
}

impl IntoCompact for EnumLayout {
    type Output = EnumLayout<CompactForm>;

    fn into_compact(self, registry: &mut Registry) -> Self::Output {
        EnumLayout {
            dispatch_key: self.dispatch_key,
            variants: self
                .variants
                .into_iter()
                .map(|(discriminant, layout)| {
                    (discriminant, layout.into_compact(registry))
                })
                .collect(),
        }
    }
}