lazy_hmap.rs 47.6 KB
Newer Older
1
// Copyright 2018-2021 Parity Technologies (UK) Ltd.
2
3
4
5
6
7
8
9
10
11
12
13
14
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
16
//! A lazy storage mapping that stores entries under their SCALE encoded key hashes.

17
use super::{
18
    CacheCell,
19
    EntryState,
20
    StorageEntry,
21
};
22
23
24
25
26
27
28
use crate::traits::{
    clear_packed_root,
    pull_packed_root_opt,
    ExtKeyPtr,
    KeyPtr,
    PackedLayout,
    SpreadLayout,
29
30
31
32
33
34
35
36
37
};
use core::{
    borrow::Borrow,
    cmp::{
        Eq,
        Ord,
    },
    fmt,
    fmt::Debug,
38
    iter::FromIterator,
39
    marker::PhantomData,
40
41
    ptr::NonNull,
};
42
43
44
45
use ink_env::hash::{
    CryptoHash,
    HashOutput,
};
46
47
48
use ink_prelude::{
    borrow::ToOwned,
    boxed::Box,
49
50
51
52
53
    collections::btree_map::{
        BTreeMap,
        Entry as BTreeMapEntry,
        OccupiedEntry as BTreeMapOccupiedEntry,
    },
54
55
56
57
58
59
60
61
62
};
use ink_primitives::Key;

/// The map for the contract storage entries.
///
/// # Note
///
/// We keep the whole entry in a `Box<T>` in order to prevent pointer
/// invalidation upon updating the cache through `&self` methods as in
63
/// [`LazyHashMap::get`].
64
pub type EntryMap<K, V> = BTreeMap<K, Box<StorageEntry<V>>>;
65
66
67
68
69
70
71
72
73

/// A lazy storage mapping that stores entries under their SCALE encoded key hashes.
///
/// # Note
///
/// This is mainly used as low-level storage primitives by other high-level
/// storage primitives in order to manage the contract storage for a whole
/// mapping of storage cells.
///
74
/// This storage data structure might store its entries anywhere in the contract
75
76
77
78
79
80
81
/// storage. It is the users responsibility to keep track of the entries if it
/// is necessary to do so.
pub struct LazyHashMap<K, V, H> {
    /// The offset key for the storage mapping.
    ///
    /// This offsets the mapping for the entries stored in the contract storage
    /// so that all lazy hash map instances store equal entries at different
82
    /// locations of the contract storage and avoid collisions.
83
84
85
86
87
    key: Option<Key>,
    /// The currently cached entries of the lazy storage mapping.
    ///
    /// This normally only represents a subset of the total set of elements.
    /// An entry is cached as soon as it is loaded or written.
88
    cached_entries: CacheCell<EntryMap<K, V>>,
89
    /// The used hash builder.
90
    hash_builder: PhantomData<H>,
91
92
}

93
94
95
96
97
98
99
/// When querying `entry()` there is a case which needs special treatment:
/// In `entry()` we first do a look-up in the cache. If the requested key is
/// in the cache we return the found object.
/// If it is not in the cache we query the storage. If we find the element
/// in storage we insert it into the cache.
///
/// The problem now is that in this case we only have the `Vacant` object
100
/// which we got from searching in the cache, but we need to return
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
/// `Occupied` here, since the object is now in the cache. We could do this
/// by querying the cache another time -- but this would be an additional
/// search. So what we do instead is to save a reference to the inserted
/// cache value in the `Occupied`. As a consequence all Entry API operations
/// (`get`, `remove`, ...) need to distinguish both cases.
enum EntryOrMutableValue<E, V> {
    /// An occupied `EntryMap` entry that holds a value.
    /// This represents the case where the key was in the cache.
    EntryElementWasInCache(E),
    /// A reference to the mutable value behind a cache entry.
    /// This represents the case where the key was not in the cache, but in storage.
    MutableValueElementWasNotInCache(V),
}

/// An occupied `EntryMap` entry that holds a value.
type OccupiedCache<'a, K, V> = BTreeMapOccupiedEntry<'a, K, Box<StorageEntry<V>>>;

/// An occupied entry that holds the value.
pub struct OccupiedEntry<'a, K, V>
where
    K: Clone,
{
    /// The key stored in this entry.
    key: K,
    /// Either the occupied `EntryMap` entry that holds the value or a mutable reference
    /// to the value behind a cache entry.
    entry: EntryOrMutableValue<OccupiedCache<'a, K, V>, &'a mut Box<StorageEntry<V>>>,
}

/// A vacant entry with previous and next vacant indices.
pub struct VacantEntry<'a, K, V>
where
    K: Ord + Clone + PackedLayout,
    V: PackedLayout,
{
    /// The key stored in this entry.
    key: K,
    /// The entry within the `LazyHashMap`. This entry can be either occupied or vacant.
    /// In an `BTreeMapEntry::Occupied` state the entry has been marked to
    /// be removed (with `None`), but we still want to expose the `VacantEntry` API
    /// to the use.
142
    /// In an `BTreeMapEntry::Vacant` state the entry is vacant, and we want to expose
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    /// the `VacantEntry` API.
    entry: BTreeMapEntry<'a, K, Box<StorageEntry<V>>>,
}

/// An entry within the `LazyHashMap`.
pub enum Entry<'a, K: 'a, V: 'a>
where
    K: Ord + Clone + PackedLayout,
    V: PackedLayout,
{
    /// A vacant entry that holds the index to the next and previous vacant entry.
    Vacant(VacantEntry<'a, K, V>),
    /// An occupied entry that holds the value.
    Occupied(OccupiedEntry<'a, K, V>),
}

159
struct DebugEntryMap<'a, K, V>(&'a CacheCell<EntryMap<K, V>>);
160
161
162
163
164
165
166

impl<'a, K, V> Debug for DebugEntryMap<'a, K, V>
where
    K: Debug,
    V: Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
167
        f.debug_map().entries(self.0.as_inner().iter()).finish()
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
    }
}

impl<K, V, H> Debug for LazyHashMap<K, V, H>
where
    K: Debug,
    V: Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        // The `hash_builder` field is not really required or needed for debugging purposes.
        f.debug_struct("LazyHashMap")
            .field("key", &self.key)
            .field("cached_entries", &DebugEntryMap(&self.cached_entries))
            .finish()
    }
}

#[test]
fn debug_impl_works() {
187
    use ink_env::hash::Blake2x256;
188
    let mut hmap = <LazyHashMap<char, i32, Blake2x256>>::new();
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    // Empty hmap.
    assert_eq!(
        format!("{:?}", &hmap),
        "LazyHashMap { key: None, cached_entries: {} }",
    );
    // Filled hmap.
    hmap.put('A', Some(1));
    hmap.put('B', Some(2));
    hmap.put('C', None);
    assert_eq!(
        format!("{:?}", &hmap),
        "LazyHashMap { \
            key: None, \
            cached_entries: {\
                'A': Entry { \
                    value: Some(1), \
                    state: Mutated \
                }, \
                'B': Entry { \
                    value: Some(2), \
                    state: Mutated \
                }, \
                'C': Entry { \
                    value: None, \
                    state: Mutated \
                }\
            } \
        }",
    );
}

220
221
#[cfg(feature = "std")]
const _: () = {
222
    use crate::traits::{
223
224
225
        LayoutCryptoHasher,
        StorageLayout,
    };
226
    use ink_metadata::layout::{
227
228
229
230
231
232
        CellLayout,
        HashLayout,
        HashingStrategy,
        Layout,
        LayoutKey,
    };
233
    use scale_info::TypeInfo;
234
235
236
237

    impl<K, V, H> StorageLayout for LazyHashMap<K, V, H>
    where
        K: Ord + scale::Encode,
238
        V: TypeInfo + 'static,
239
240
        H: CryptoHash + LayoutCryptoHasher,
        Key: From<<H as HashOutput>::Type>,
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    {
        fn layout(key_ptr: &mut KeyPtr) -> Layout {
            Layout::Hash(HashLayout::new(
                LayoutKey::from(key_ptr.advance_by(1)),
                HashingStrategy::new(
                    <H as LayoutCryptoHasher>::crypto_hasher(),
                    b"ink hashmap".to_vec(),
                    Vec::new(),
                ),
                Layout::Cell(CellLayout::new::<V>(LayoutKey::from(
                    key_ptr.advance_by(0),
                ))),
            ))
        }
    }
};

258
259
260
261
impl<K, V, H> SpreadLayout for LazyHashMap<K, V, H>
where
    K: Ord + scale::Encode,
    V: PackedLayout,
262
263
    H: CryptoHash,
    Key: From<<H as HashOutput>::Type>,
264
265
266
267
{
    const FOOTPRINT: u64 = 1;

    fn pull_spread(ptr: &mut KeyPtr) -> Self {
268
        Self::lazy(*ExtKeyPtr::next_for::<Self>(ptr))
269
270
271
    }

    fn push_spread(&self, ptr: &mut KeyPtr) {
272
        let offset_key = ExtKeyPtr::next_for::<Self>(ptr);
273
        for (index, entry) in self.entries().iter() {
274
            let root_key = self.to_offset_key(offset_key, index);
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
            entry.push_packed_root(&root_key);
        }
    }

    #[inline]
    fn clear_spread(&self, _ptr: &mut KeyPtr) {
        // Low-level lazy abstractions won't perform automated clean-up since
        // they generally are not aware of their entire set of associated
        // elements. The high-level abstractions that build upon them are
        // responsible for cleaning up.
    }
}

// # Developer Note
//
// Even thought `LazyHashMap` would require storing just a single key a thus
// be a packable storage entity we cannot really make it one since this could
// allow for overlapping lazy hash map instances.
// An example for this would be a `Pack<(LazyHashMap, LazyHashMap)>` where
// both lazy hash maps would use the same underlying key and thus would apply
// the same underlying key mapping.

impl<K, V, H> Default for LazyHashMap<K, V, H>
where
    K: Ord,
{
    fn default() -> Self {
        Self::new()
    }
}

306
307
308
309
impl<K, V, H> FromIterator<(K, V)> for LazyHashMap<K, V, H>
where
    K: Ord + Clone + PackedLayout,
    V: PackedLayout,
310
311
    H: CryptoHash,
    Key: From<<H as HashOutput>::Type>,
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
{
    fn from_iter<I>(iter: I) -> Self
    where
        I: IntoIterator<Item = (K, V)>,
    {
        let mut hmap = LazyHashMap::new();
        hmap.extend(iter);
        hmap
    }
}

impl<K, V, H> Extend<(K, V)> for LazyHashMap<K, V, H>
where
    K: Ord + Clone + PackedLayout,
    V: PackedLayout,
327
328
    H: CryptoHash,
    Key: From<<H as HashOutput>::Type>,
329
330
331
332
333
334
335
336
337
338
339
{
    fn extend<I>(&mut self, iter: I)
    where
        I: IntoIterator<Item = (K, V)>,
    {
        for (key, value) in iter {
            self.put(key, Some(value));
        }
    }
}

340
341
342
343
344
345
346
347
348
349
350
351
352
impl<K, V, H> LazyHashMap<K, V, H>
where
    K: Ord,
{
    /// Creates a new empty lazy hash map.
    ///
    /// # Note
    ///
    /// A lazy map created this way cannot be used to load from the contract storage.
    /// All operations that directly or indirectly load from storage will panic.
    pub fn new() -> Self {
        Self {
            key: None,
353
            cached_entries: CacheCell::new(EntryMap::new()),
354
            hash_builder: Default::default(),
355
356
357
358
359
360
361
362
363
        }
    }

    /// Creates a new empty lazy hash map positioned at the given key.
    ///
    /// # Note
    ///
    /// This constructor is private and should never need to be called from
    /// outside this module. It is used to construct a lazy index map from a
364
365
    /// key that is only useful upon a contract call. Use
    /// [`LazyIndexMap::new`][`crate::lazy::LazyIndexMap::new`]
366
367
368
369
    /// for construction during contract initialization.
    fn lazy(key: Key) -> Self {
        Self {
            key: Some(key),
370
            cached_entries: CacheCell::new(EntryMap::new()),
371
            hash_builder: Default::default(),
372
373
374
375
376
377
378
379
        }
    }

    /// Returns the offset key of the lazy map if any.
    pub fn key(&self) -> Option<&Key> {
        self.key.as_ref()
    }

380
381
382
383
384
385
    /// Returns the length of the cached entries.
    #[cfg(test)]
    pub(crate) fn len_cached_entries(&self) -> usize {
        self.entries().len()
    }

386
387
    /// Returns a shared reference to the underlying entries.
    fn entries(&self) -> &EntryMap<K, V> {
388
        self.cached_entries.as_inner()
389
390
391
392
    }

    /// Returns an exclusive reference to the underlying entries.
    fn entries_mut(&mut self) -> &mut EntryMap<K, V> {
393
        self.cached_entries.as_inner_mut()
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
    }

    /// Puts the new value under the given key.
    ///
    /// # Note
    ///
    /// - Use [`LazyHashMap::put`]`(None)` in order to remove an element.
    /// - Prefer this method over [`LazyHashMap::put_get`] if you are not interested
    ///   in the old value of the same cell index.
    ///
    /// # Panics
    ///
    /// - If the lazy hash map is in an invalid state that forbids interaction
    ///   with the underlying contract storage.
    /// - If the decoding of the old element at the given index failed.
    pub fn put(&mut self, key: K, new_value: Option<V>) {
410
411
412
413
414
415
416
417
418
419
420
        self.entries_mut().insert(
            key,
            Box::new(StorageEntry::new(new_value, EntryState::Mutated)),
        );
    }
}

impl<K, V, H> LazyHashMap<K, V, H>
where
    K: Clone + Ord + PackedLayout,
    V: PackedLayout,
421
422
    H: CryptoHash,
    Key: From<<H as HashOutput>::Type>,
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
{
    /// Gets the given key's corresponding entry in the map for in-place manipulation.
    pub fn entry(&mut self, key: K) -> Entry<K, V> {
        // SAFETY: We have put the whole `cached_entries` mapping into an
        //         `UnsafeCell` because of this caching functionality. The
        //         trick here is that due to using `Box<T>` internally
        //         we are able to return references to the cached entries
        //         while maintaining the invariant that mutating the caching
        //         `BTreeMap` will never invalidate those references.
        //         By returning a raw pointer we enforce an `unsafe` block at
        //         the caller site to underline that guarantees are given by the
        //         caller.
        let cached_entries = unsafe { &mut *self.cached_entries.get_ptr().as_ptr() };
        // We have to clone the key here because we do not have access to the unsafe
        // raw entry API for Rust hash maps, yet since it is unstable. We can remove
        // the constraints on `K: Clone` once we have access to this API.
        // Read more about the issue here: https://github.com/rust-lang/rust/issues/56167
        match cached_entries.entry(key.to_owned()) {
            BTreeMapEntry::Occupied(entry) => {
                match entry.get().value() {
                    Some(_) => {
                        Entry::Occupied(OccupiedEntry {
                            key,
                            entry: EntryOrMutableValue::EntryElementWasInCache(entry),
                        })
                    }
                    None => {
                        // value is already marked as to be removed
                        Entry::Vacant(VacantEntry {
                            key,
                            entry: BTreeMapEntry::Occupied(entry),
                        })
                    }
                }
            }
            BTreeMapEntry::Vacant(entry) => {
                let value = self
                    .key_at(&key)
                    .map(|key| pull_packed_root_opt::<V>(&key))
                    .unwrap_or(None);
                match value.is_some() {
                    true => {
                        // The entry was not in the cache, but in the storage. This results in
                        // a problem: We only have `Vacant` here, but need to return `Occupied`,
                        // to reflect this.
                        let v_mut = entry.insert(Box::new(StorageEntry::new(
                            value,
                            EntryState::Preserved,
                        )));
                        Entry::Occupied(OccupiedEntry {
                            key,
                            entry: EntryOrMutableValue::MutableValueElementWasNotInCache(
                                v_mut,
                            ),
                        })
                    }
                    false => {
                        Entry::Vacant(VacantEntry {
                            key,
                            entry: BTreeMapEntry::Vacant(entry),
                        })
                    }
                }
            }
        }
488
489
490
491
492
493
    }
}

impl<K, V, H> LazyHashMap<K, V, H>
where
    K: Ord + scale::Encode,
494
495
    H: CryptoHash,
    Key: From<<H as HashOutput>::Type>,
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
{
    /// Returns an offset key for the given key pair.
    fn to_offset_key<Q>(&self, storage_key: &Key, key: &Q) -> Key
    where
        K: Borrow<Q>,
        Q: scale::Encode,
    {
        #[derive(scale::Encode)]
        struct KeyPair<'a, Q> {
            prefix: [u8; 11],
            storage_key: &'a Key,
            value_key: &'a Q,
        }
        let key_pair = KeyPair {
            prefix: [
                b'i', b'n', b'k', b' ', b'h', b'a', b's', b'h', b'm', b'a', b'p',
            ],
            storage_key,
            value_key: key,
        };
516
        let mut output = <H as HashOutput>::Type::default();
517
        ink_env::hash_encoded::<H, KeyPair<Q>>(&key_pair, &mut output);
518
        output.into()
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
    }

    /// Returns an offset key for the given key.
    fn key_at<Q>(&self, key: &Q) -> Option<Key>
    where
        K: Borrow<Q>,
        Q: scale::Encode,
    {
        self.key
            .map(|storage_key| self.to_offset_key(&storage_key, key))
    }
}

impl<K, V, H> LazyHashMap<K, V, H>
where
    K: Ord + Eq + scale::Encode,
    V: PackedLayout,
536
537
    H: CryptoHash,
    Key: From<<H as HashOutput>::Type>,
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
{
    /// Lazily loads the value at the given index.
    ///
    /// # Note
    ///
    /// Only loads a value if `key` is set and if the value has not been loaded yet.
    /// Returns the freshly loaded or already loaded entry of the value.
    ///
    /// # Safety
    ///
    /// This function has a `&self` receiver while returning an `Option<*mut T>`
    /// which is unsafe in isolation. The caller has to determine how to forward
    /// the returned `*mut T`.
    ///
    /// # Safety
    ///
    /// This is an `unsafe` operation because it has a `&self` receiver but returns
    /// a `*mut Entry<T>` pointer that allows for exclusive access. This is safe
556
557
    /// within internal use only and should never be given outside the lazy entity
    /// for public `&self` methods.
558
    unsafe fn lazily_load<Q>(&self, key: &Q) -> NonNull<StorageEntry<V>>
559
560
561
562
563
564
565
566
567
568
569
570
571
    where
        K: Borrow<Q>,
        Q: Ord + scale::Encode + ToOwned<Owned = K>,
    {
        // SAFETY: We have put the whole `cached_entries` mapping into an
        //         `UnsafeCell` because of this caching functionality. The
        //         trick here is that due to using `Box<T>` internally
        //         we are able to return references to the cached entries
        //         while maintaining the invariant that mutating the caching
        //         `BTreeMap` will never invalidate those references.
        //         By returning a raw pointer we enforce an `unsafe` block at
        //         the caller site to underline that guarantees are given by the
        //         caller.
572
        let cached_entries = &mut *self.cached_entries.get_ptr().as_ptr();
573
574
575
576
577
578
579
580
581
582
583
584
585
586
        // We have to clone the key here because we do not have access to the unsafe
        // raw entry API for Rust hash maps, yet since it is unstable. We can remove
        // the contraints on `K: Clone` once we have access to this API.
        // Read more about the issue here: https://github.com/rust-lang/rust/issues/56167
        match cached_entries.entry(key.to_owned()) {
            BTreeMapEntry::Occupied(occupied) => {
                NonNull::from(&mut **occupied.into_mut())
            }
            BTreeMapEntry::Vacant(vacant) => {
                let value = self
                    .key_at(key)
                    .map(|key| pull_packed_root_opt::<V>(&key))
                    .unwrap_or(None);
                NonNull::from(
587
588
589
590
                    &mut **vacant.insert(Box::new(StorageEntry::new(
                        value,
                        EntryState::Preserved,
                    ))),
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
                )
            }
        }
    }

    /// Lazily loads the value associated with the given key.
    ///
    /// # Note
    ///
    /// Only loads a value if `key` is set and if the value has not been loaded yet.
    /// Returns a pointer to the freshly loaded or already loaded entry of the value.
    ///
    /// # Panics
    ///
    /// - If the lazy chunk is in an invalid state that forbids interaction.
    /// - If the lazy chunk is not in a state that allows lazy loading.
607
    fn lazily_load_mut<Q>(&mut self, index: &Q) -> &mut StorageEntry<V>
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
    where
        K: Borrow<Q>,
        Q: Ord + scale::Encode + ToOwned<Owned = K>,
    {
        // SAFETY:
        // - Returning a `&mut Entry<T>` is safe because entities inside the
        //   cache are stored within a `Box` to not invalidate references into
        //   them upon operating on the outer cache.
        unsafe { &mut *self.lazily_load(index).as_ptr() }
    }

    /// Clears the underlying storage of the entry at the given index.
    ///
    /// # Safety
    ///
    /// For performance reasons this does not synchronize the lazy index map's
    /// memory-side cache which invalidates future accesses the cleared entry.
    /// Care should be taken when using this API.
    ///
    /// The general use of this API is to streamline `Drop` implementations of
628
    /// high-level abstractions that build upon this low-level data structure.
629
630
631
632
633
634
635
636
637
638
639
640
    pub fn clear_packed_at<Q>(&self, index: &Q)
    where
        K: Borrow<Q>,
        V: PackedLayout,
        Q: Ord + scale::Encode + ToOwned<Owned = K>,
    {
        let root_key = self.key_at(index).expect("cannot clear in lazy state");
        if <V as SpreadLayout>::REQUIRES_DEEP_CLEAN_UP {
            // We need to load the entity before we remove its associated contract storage
            // because it requires a deep clean-up which propagates clearing to its fields,
            // for example in the case of `T` being a `storage::Box`.
            let entity = self.get(index).expect("cannot clear a non existing entity");
641
            clear_packed_root::<V>(entity, &root_key);
642
643
644
        } else {
            // The type does not require deep clean-up so we can simply clean-up
            // its associated storage cell and be done without having to load it first.
645
            ink_env::clear_contract_storage(&root_key);
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
        }
    }

    /// Returns a shared reference to the value associated with the given key if any.
    ///
    /// # Panics
    ///
    /// - If the lazy chunk is in an invalid state that forbids interaction.
    /// - If the decoding of the element at the given index failed.
    pub fn get<Q>(&self, index: &Q) -> Option<&V>
    where
        K: Borrow<Q>,
        Q: Ord + scale::Encode + ToOwned<Owned = K>,
    {
        // SAFETY: Dereferencing the `*mut T` pointer into a `&T` is safe
        //         since this method's receiver is `&self` so we do not
        //         leak non-shared references to the outside.
        unsafe { &*self.lazily_load(index).as_ptr() }.value().into()
    }

    /// Returns an exclusive reference to the value associated with the given key if any.
    ///
    /// # Panics
    ///
    /// - If the lazy chunk is in an invalid state that forbids interaction.
    /// - If the decoding of the element at the given index failed.
    pub fn get_mut<Q>(&mut self, index: &Q) -> Option<&mut V>
    where
        K: Borrow<Q>,
        Q: Ord + scale::Encode + ToOwned<Owned = K>,
    {
        self.lazily_load_mut(index).value_mut().into()
    }

    /// Puts the new value under the given key and returns the old value if any.
    ///
    /// # Note
    ///
    /// - Use [`LazyHashMap::put_get`]`(None)` in order to remove an element
    ///   and retrieve the old element back.
    ///
    /// # Panics
    ///
    /// - If the lazy hashmap is in an invalid state that forbids interaction.
    /// - If the decoding of the old element at the given index failed.
    pub fn put_get<Q>(&mut self, key: &Q, new_value: Option<V>) -> Option<V>
    where
        K: Borrow<Q>,
        Q: Ord + scale::Encode + ToOwned<Owned = K>,
    {
        self.lazily_load_mut(key).put(new_value)
    }

    /// Swaps the values at entries with associated keys `x` and `y`.
    ///
    /// This operation tries to be as efficient as possible and reuse allocations.
    ///
    /// # Panics
    ///
    /// - If the lazy hashmap is in an invalid state that forbids interaction.
    /// - If the decoding of one of the elements failed.
    pub fn swap<Q1, Q2>(&mut self, x: &Q1, y: &Q2)
    where
        K: Borrow<Q1> + Borrow<Q2>,
        Q1: Ord + PartialEq<Q2> + scale::Encode + ToOwned<Owned = K>,
        Q2: Ord + PartialEq<Q1> + scale::Encode + ToOwned<Owned = K>,
    {
        if x == y {
            // Bail out early if both indices are the same.
            return
        }
        let (loaded_x, loaded_y) =
            // SAFETY: The loaded `x` and `y` entries are distinct from each
            //         other guaranteed by the previous check. Also `lazily_load`
            //         guarantees to return a pointer to a pinned entity
            //         so that the returned references do not conflict with
            //         each other.
            unsafe { (
                &mut *self.lazily_load(x).as_ptr(),
                &mut *self.lazily_load(y).as_ptr(),
            ) };
        if loaded_x.value().is_none() && loaded_y.value().is_none() {
            // Bail out since nothing has to be swapped if both values are `None`.
            return
        }
        // Set the `mutate` flag since at this point at least one of the loaded
        // values is guaranteed to be `Some`.
        loaded_x.replace_state(EntryState::Mutated);
        loaded_y.replace_state(EntryState::Mutated);
        core::mem::swap(loaded_x.value_mut(), loaded_y.value_mut());
    }
}

739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
impl<'a, K, V> Entry<'a, K, V>
where
    K: Ord + Clone + PackedLayout,
    V: PackedLayout + core::fmt::Debug + core::cmp::Eq + Default,
{
    /// Returns a reference to this entry's key.
    pub fn key(&self) -> &K {
        match self {
            Entry::Occupied(entry) => &entry.key,
            Entry::Vacant(entry) => &entry.key,
        }
    }

    /// Ensures a value is in the entry by inserting the default value if empty, and returns
    /// a reference to the value in the entry.
    pub fn or_default(self) -> &'a V {
        match self {
            Entry::Occupied(entry) => entry.into_mut(),
            Entry::Vacant(entry) => entry.insert(V::default()),
        }
    }

    /// Ensures a value is in the entry by inserting the default if empty, and returns
    /// a mutable reference to the value in the entry.
    pub fn or_insert(self, default: V) -> &'a mut V {
        match self {
            Entry::Occupied(entry) => entry.into_mut(),
            Entry::Vacant(entry) => entry.insert(default),
        }
    }

    /// Ensures a value is in the entry by inserting the result of the default function if empty,
    /// and returns mutable references to the key and value in the entry.
    pub fn or_insert_with<F>(self, default: F) -> &'a mut V
    where
        F: FnOnce() -> V,
    {
        match self {
            Entry::Occupied(entry) => entry.into_mut(),
            Entry::Vacant(entry) => entry.insert(default()),
        }
    }

    /// Ensures a value is in the entry by inserting, if empty, the result of the default
    /// function, which takes the key as its argument, and returns a mutable reference to
    /// the value in the entry.
    pub fn or_insert_with_key<F>(self, default: F) -> &'a mut V
    where
        F: FnOnce(&K) -> V,
    {
        match self {
            Entry::Occupied(entry) => entry.into_mut(),
            Entry::Vacant(entry) => {
                let value = default(&entry.key);
                entry.insert(value)
            }
        }
    }

    /// Provides in-place mutable access to an occupied entry before any
    /// potential inserts into the map.
    pub fn and_modify<F>(self, f: F) -> Self
    where
        F: FnOnce(&mut V),
    {
        match self {
            Entry::Occupied(mut entry) => {
                {
                    let v = entry.get_mut();
                    f(v);
                }
                Entry::Occupied(entry)
            }
            Entry::Vacant(entry) => Entry::Vacant(entry),
        }
    }
}

impl<'a, K, V> VacantEntry<'a, K, V>
where
    K: Ord + Clone + PackedLayout,
    V: PackedLayout,
{
822
    /// Gets a reference to the key that would be used when inserting a value through the `VacantEntry`.
823
824
825
826
827
828
829
830
831
    pub fn key(&self) -> &K {
        &self.key
    }

    /// Take ownership of the key.
    pub fn into_key(self) -> K {
        self.key
    }

832
    /// Sets the value of the entry with the `VacantEntry`s key, and returns a mutable reference to it.
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
    pub fn insert(self, value: V) -> &'a mut V {
        let new = Box::new(StorageEntry::new(Some(value), EntryState::Mutated));
        match self.entry {
            BTreeMapEntry::Vacant(vacant) => {
                vacant
                    .insert(new)
                    .value_mut()
                    .as_mut()
                    .expect("insert was just executed; qed")
            }
            BTreeMapEntry::Occupied(mut occupied) => {
                occupied.insert(new);
                occupied
                    .into_mut()
                    .value_mut()
                    .as_mut()
                    .expect("insert was just executed; qed")
            }
        }
    }
}

impl<'a, K, V> OccupiedEntry<'a, K, V>
where
    K: Ord + Clone + PackedLayout,
    V: PackedLayout,
{
    /// Gets a reference to the key in the entry.
    pub fn key(&self) -> &K {
        &self.key
    }

    /// Take the ownership of the key and value from the map.
    pub fn remove_entry(self) -> (K, V) {
        let old = match self.entry {
            EntryOrMutableValue::EntryElementWasInCache(mut entry) => {
                entry
                    .get_mut()
                    .value_mut()
                    .take()
                    .expect("entry behind `OccupiedEntry` must always exist")
            }
            EntryOrMutableValue::MutableValueElementWasNotInCache(v_mut) => {
                v_mut
                    .value_mut()
                    .take()
                    .expect("entry behind `MutableValue` must always exist")
            }
        };
        (self.key, old)
    }

    /// Gets a reference to the value in the entry.
    pub fn get(&self) -> &V {
        match &self.entry {
            EntryOrMutableValue::EntryElementWasInCache(entry) => {
                entry
                    .get()
                    .value()
                    .as_ref()
                    .expect("entry behind `OccupiedEntry` must always exist")
            }
            EntryOrMutableValue::MutableValueElementWasNotInCache(v_mut) => {
                v_mut
                    .value()
                    .as_ref()
                    .expect("entry behind `MutableValue` must always exist")
            }
        }
    }

    /// Gets a mutable reference to the value in the entry.
    ///
    /// If you need a reference to the `OccupiedEntry` which may outlive the destruction of the
    /// `Entry` value, see `into_mut`.
    pub fn get_mut(&mut self) -> &mut V {
        match &mut self.entry {
            EntryOrMutableValue::EntryElementWasInCache(entry) => {
                entry
                    .get_mut()
                    .value_mut()
                    .as_mut()
                    .expect("entry behind `OccupiedEntry` must always exist")
            }
            EntryOrMutableValue::MutableValueElementWasNotInCache(v_mut) => {
                v_mut
                    .value_mut()
                    .as_mut()
                    .expect("entry behind `MutableValue` must always exist")
            }
        }
    }

    /// Sets the value of the entry, and returns the entry's old value.
    pub fn insert(&mut self, new_value: V) -> V {
        match &mut self.entry {
            EntryOrMutableValue::EntryElementWasInCache(entry) => {
                let new_value =
                    Box::new(StorageEntry::new(Some(new_value), EntryState::Mutated));
                entry
                    .insert(new_value)
                    .into_value()
                    .expect("entry behind `OccupiedEntry` must always exist")
            }
            EntryOrMutableValue::MutableValueElementWasNotInCache(v_mut) => {
                core::mem::replace(v_mut.value_mut(), Some(new_value))
                    .expect("entry behind `MutableValue` must always exist")
            }
        }
    }

    /// Takes the value out of the entry, and returns it.
    pub fn remove(self) -> V {
        self.remove_entry().1
    }

949
    /// Converts the `OccupiedEntry` into a mutable reference to the value in the entry
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
    /// with a lifetime bound to the map itself.
    pub fn into_mut(self) -> &'a mut V {
        match self.entry {
            EntryOrMutableValue::EntryElementWasInCache(entry) => {
                entry
                    .into_mut()
                    .value_mut()
                    .as_mut()
                    .expect("entry behind `OccupiedEntry` must always exist")
            }
            EntryOrMutableValue::MutableValueElementWasNotInCache(v_mut) => {
                v_mut
                    .value_mut()
                    .as_mut()
                    .expect("entry behind `MutableValue` must always exist")
            }
        }
    }
}

970
971
972
973
974
#[cfg(test)]
mod tests {
    use super::{
        EntryState,
        LazyHashMap,
975
        StorageEntry,
976
    };
977
978
979
980
981
982
983
    use crate::traits::{
        KeyPtr,
        SpreadLayout,
    };
    use ink_env::hash::{
        Blake2x256,
        Sha2x256,
984
985
986
987
988
989
    };
    use ink_primitives::Key;

    /// Asserts that the cached entries of the given `imap` is equal to the `expected` slice.
    fn assert_cached_entries<H>(
        hmap: &LazyHashMap<i32, u8, H>,
990
        expected: &[(i32, StorageEntry<u8>)],
991
    ) {
992
        assert_eq!(hmap.len_cached_entries(), expected.len());
993
994
995
996
997
998
999
1000
1001
1002
        for (given, expected) in hmap
            .entries()
            .iter()
            .map(|(index, boxed_entry)| (*index, &**boxed_entry))
            .zip(expected.iter().map(|(index, entry)| (*index, entry)))
        {
            assert_eq!(given, expected);
        }
    }

1003
1004
    fn new_hmap() -> LazyHashMap<i32, u8, Blake2x256> {
        <LazyHashMap<i32, u8, Blake2x256>>::new()
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
    }

    #[test]
    fn new_works() {
        let hmap = new_hmap();
        // Key must be none.
        assert_eq!(hmap.key(), None);
        assert_eq!(hmap.key_at(&0), None);
        // Cached elements must be empty.
        assert_cached_entries(&hmap, &[]);
        // Same as default:
1016
        let default_hmap = <LazyHashMap<i32, u8, Blake2x256>>::default();
1017
1018
1019
1020
1021
1022
        assert_eq!(hmap.key(), default_hmap.key());
        assert_eq!(hmap.entries(), default_hmap.entries());
    }

    #[test]
    fn key_at_works() {
1023
        let key = Key::from([0x42; 32]);
1024

1025
        // BLAKE-2 256-bit hasher:
1026
        let hmap1 = <LazyHashMap<i32, u8, Blake2x256>>::lazy(key);
1027
1028
1029
1030
1031
1032
1033
1034
1035
        // Key must be some.
        assert_eq!(hmap1.key(), Some(&key));
        // Cached elements must be empty.
        assert_cached_entries(&hmap1, &[]);
        let hmap1_at_0 = b"\
        \x67\x7E\xD3\xA4\x72\x2A\x83\x60\
        \x96\x65\x0E\xCD\x1F\x2C\xE8\x5D\
        \xBF\x7E\xC0\xFF\x16\x40\x8A\xD8\
        \x75\x88\xDE\x52\xF5\x8B\x99\xAF";
1036
        assert_eq!(hmap1.key_at(&0), Some(Key::from(*hmap1_at_0)));
1037
1038
1039
1040
1041
        // Same parameters must yield the same key:
        //
        // This tests an actual regression that happened because the
        // hash accumulator was not reset after a hash finalization.
        assert_cached_entries(&hmap1, &[]);
1042
        assert_eq!(hmap1.key_at(&0), Some(Key::from(*hmap1_at_0)));
1043
1044
        assert_eq!(
            hmap1.key_at(&1),
1045
1046
            Some(Key::from(
                *b"\
1047
1048
1049
                \x9A\x46\x1F\xB3\xA1\xC4\x20\xF8\
                \xA0\xD9\xA7\x79\x2F\x07\xFB\x7D\
                \x49\xDD\xAB\x08\x67\x90\x96\x15\
1050
1051
                \xFB\x85\x36\x3B\x82\x94\x85\x3F"
            ))
1052
        );
1053
        // SHA-2 256-bit hasher:
1054
        let hmap2 = <LazyHashMap<i32, u8, Sha2x256>>::lazy(key);
1055
1056
1057
1058
1059
1060
        // Key must be some.
        assert_eq!(hmap2.key(), Some(&key));
        // Cached elements must be empty.
        assert_cached_entries(&hmap2, &[]);
        assert_eq!(
            hmap1.key_at(&0),
1061
1062
            Some(Key::from(
                *b"\
1063
1064
1065
                \x67\x7E\xD3\xA4\x72\x2A\x83\x60\
                \x96\x65\x0E\xCD\x1F\x2C\xE8\x5D\
                \xBF\x7E\xC0\xFF\x16\x40\x8A\xD8\
1066
1067
                \x75\x88\xDE\x52\xF5\x8B\x99\xAF"
            ))
1068
1069
1070
        );
        assert_eq!(
            hmap1.key_at(&1),
1071
1072
            Some(Key::from(
                *b"\
1073
1074
1075
                \x9A\x46\x1F\xB3\xA1\xC4\x20\xF8\
                \xA0\xD9\xA7\x79\x2F\x07\xFB\x7D\
                \x49\xDD\xAB\x08\x67\x90\x96\x15\
1076
1077
                \xFB\x85\x36\x3B\x82\x94\x85\x3F"
            ))
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
        );
    }

    #[test]
    fn put_get_works() {
        let mut hmap = new_hmap();
        // Put some values.
        assert_eq!(hmap.put_get(&1, Some(b'A')), None);
        assert_eq!(hmap.put_get(&2, Some(b'B')), None);
        assert_eq!(hmap.put_get(&4, Some(b'C')), None);
        assert_cached_entries(
            &hmap,
            &[
1091
1092
1093
                (1, StorageEntry::new(Some(b'A'), EntryState::Mutated)),
                (2, StorageEntry::new(Some(b'B'), EntryState::Mutated)),
                (4, StorageEntry::new(Some(b'C'), EntryState::Mutated)),
1094
1095
1096
1097
1098
1099
1100
1101
            ],
        );
        // Put none values.
        assert_eq!(hmap.put_get(&3, None), None);
        assert_eq!(hmap.put_get(&5, None), None);
        assert_cached_entries(
            &hmap,
            &[
1102
1103
1104
1105
1106
                (1, StorageEntry::new(Some(b'A'), EntryState::Mutated)),
                (2, StorageEntry::new(Some(b'B'), EntryState::Mutated)),
                (3, StorageEntry::new(None, EntryState::Preserved)),
                (4, StorageEntry::new(Some(b'C'), EntryState::Mutated)),
                (5, StorageEntry::new(None, EntryState::Preserved)),
1107
1108
1109
1110
1111
1112
1113
1114
            ],
        );
        // Override some values with none.
        assert_eq!(hmap.put_get(&2, None), Some(b'B'));
        assert_eq!(hmap.put_get(&4, None), Some(b'C'));
        assert_cached_entries(
            &hmap,
            &[
1115
1116
1117
1118
1119
                (1, StorageEntry::new(Some(b'A'), EntryState::Mutated)),
                (2, StorageEntry::new(None, EntryState::Mutated)),
                (3, StorageEntry::new(None, EntryState::Preserved)),
                (4, StorageEntry::new(None, EntryState::Mutated)),
                (5, StorageEntry::new(None, EntryState::Preserved)),
1120
1121
1122
1123
1124
1125
1126
1127
            ],
        );
        // Override none values with some.
        assert_eq!(hmap.put_get(&3, Some(b'X')), None);
        assert_eq!(hmap.put_get(&5, Some(b'Y')), None);
        assert_cached_entries(
            &hmap,
            &[
1128
1129
1130
1131
1132
                (1, StorageEntry::new(Some(b'A'), EntryState::Mutated)),
                (2, StorageEntry::new(None, EntryState::Mutated)),
                (3, StorageEntry::new(Some(b'X'), EntryState::Mutated)),
                (4, StorageEntry::new(None, EntryState::Mutated)),
                (5, StorageEntry::new(Some(b'Y'), EntryState::Mutated)),
1133
1134
1135
1136
1137
1138
1139
1140
            ],
        );
    }

    #[test]
    fn get_works() {
        let mut hmap = new_hmap();
        let nothing_changed = &[
1141
1142
1143
1144
            (1, StorageEntry::new(None, EntryState::Preserved)),
            (2, StorageEntry::new(Some(b'B'), EntryState::Mutated)),
            (3, StorageEntry::new(None, EntryState::Preserved)),
            (4, StorageEntry::new(Some(b'D'), EntryState::Mutated)),
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
        ];
        // Put some values.
        assert_eq!(hmap.put_get(&1, None), None);
        assert_eq!(hmap.put_get(&2, Some(b'B')), None);
        assert_eq!(hmap.put_get(&3, None), None);
        assert_eq!(hmap.put_get(&4, Some(b'D')), None);
        assert_cached_entries(&hmap, nothing_changed);
        // `get` works:
        assert_eq!(hmap.get(&1), None);
        assert_eq!(hmap.get(&2), Some(&b'B'));
        assert_eq!(hmap.get(&3), None);
        assert_eq!(hmap.get(&4), Some(&b'D'));
        assert_cached_entries(&hmap, nothing_changed);
        // `get_mut` works:
        assert_eq!(hmap.get_mut(&1), None);
        assert_eq!(hmap.get_mut(&2), Some(&mut b'B'));
        assert_eq!(hmap.get_mut(&3), None);
        assert_eq!(hmap.get_mut(&4), Some(&mut b'D'));
        assert_cached_entries(&hmap, nothing_changed);
        // `get` or `get_mut` without cache:
        assert_eq!(hmap.get(&5), None);
        assert_eq!(hmap.get_mut(&5), None);
    }

    #[test]
    fn put_works() {
        let mut hmap = new_hmap();
        // Put some values.
        hmap.put(1, None);
        hmap.put(2, Some(b'B'));
        hmap.put(4, None);
        // The main difference between `put` and `put_get` is that `put` never
        // loads from storage which also has one drawback: Putting a `None`
        // value always ends-up in `Mutated` state for the entry even if the
        // entry is already `None`.
        assert_cached_entries(
            &hmap,
            &[
1183
1184
1185
                (1, StorageEntry::new(None, EntryState::Mutated)),
                (2, StorageEntry::new(Some(b'B'), EntryState::Mutated)),
                (4, StorageEntry::new(None, EntryState::Mutated)),
1186
1187
1188
1189
1190
1191
1192
1193
            ],
        );
        // Overwrite entries:
        hmap.put(1, Some(b'A'));
        hmap.put(2, None);
        assert_cached_entries(
            &hmap,
            &[
1194
1195
1196
                (1, StorageEntry::new(Some(b'A'), EntryState::Mutated)),
                (2, StorageEntry::new(None, EntryState::Mutated)),
                (4, StorageEntry::new(None, EntryState::Mutated)),
1197
1198
1199
1200
1201
1202
1203
1204
            ],
        );
    }

    #[test]
    fn swap_works() {
        let mut hmap = new_hmap();
        let nothing_changed = &[
1205
1206
1207
1208
            (1, StorageEntry::new(Some(b'A'), EntryState::Mutated)),
            (2, StorageEntry::new(Some(b'B'), EntryState::Mutated)),
            (3, StorageEntry::new(None, EntryState::Preserved)),
            (4, StorageEntry::new(None, EntryState::Preserved)),
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
        ];
        // Put some values.
        assert_eq!(hmap.put_get(&1, Some(b'A')), None);
        assert_eq!(hmap.put_get(&2, Some(b'B')), None);
        assert_eq!(hmap.put_get(&3, None), None);
        assert_eq!(hmap.put_get(&4, None), None);
        assert_cached_entries(&hmap, nothing_changed);
        // Swap same indices: Check that nothing has changed.
        for i in 0..4 {
            hmap.swap(&i, &i);
        }
        assert_cached_entries(&hmap, nothing_changed);
        // Swap `None` values: Check that nothing has changed.
        hmap.swap(&3, &4);
        hmap.swap(&4, &3);
        assert_cached_entries(&hmap, nothing_changed);
        // Swap `Some` and `None`:
        hmap.swap(&1, &3);
        assert_cached_entries(
            &hmap,
            &[
1230
1231
1232
1233
                (1, StorageEntry::new(None, EntryState::Mutated)),
                (2, StorageEntry::new(Some(b'B'), EntryState::Mutated)),
                (3, StorageEntry::new(Some(b'A'), EntryState::Mutated)),
                (4, StorageEntry::new(None, EntryState::Preserved)),
1234
1235
1236
1237
1238
1239
1240
            ],
        );
        // Swap `Some` and `Some`:
        hmap.swap(&2, &3);
        assert_cached_entries(
            &hmap,
            &[
1241
1242
1243
1244
                (1, StorageEntry::new(None, EntryState::Mutated)),
                (2, StorageEntry::new(Some(b'A'), EntryState::Mutated)),
                (3, StorageEntry::new(Some(b'B'), EntryState::Mutated)),
                (4, StorageEntry::new(None, EntryState::Preserved)),
1245
1246
1247
1248
1249
1250
1251
            ],
        );
        // Swap out of bounds: `None` and `None`
        hmap.swap(&4, &5);
        assert_cached_entries(
            &hmap,
            &[
1252
1253
1254
1255
1256
                (1, StorageEntry::new(None, EntryState::Mutated)),
                (2, StorageEntry::new(Some(b'A'), EntryState::Mutated)),
                (3, StorageEntry::new(Some(b'B'), EntryState::Mutated)),
                (4, StorageEntry::new(None, EntryState::Preserved)),
                (5, StorageEntry::new(None, EntryState::Preserved)),
1257
1258
1259
1260
1261
1262
1263
            ],
        );
        // Swap out of bounds: `Some` and `None`
        hmap.swap(&3, &6);
        assert_cached_entries(
            &hmap,
            &[
1264
1265
1266
1267
1268
1269
                (1, StorageEntry::new(None, EntryState::Mutated)),
                (2, StorageEntry::new(Some(b'A'), EntryState::Mutated)),
                (3, StorageEntry::new(None, EntryState::Mutated)),
                (4, StorageEntry::new(None, EntryState::Preserved)),
                (5, StorageEntry::new(None, EntryState::Preserved)),
                (6, StorageEntry::new(Some(b'B'), EntryState::Mutated)),
1270
1271
1272
1273
1274
            ],
        );
    }

    #[test]
1275
    fn spread_layout_works() -> ink_env::Result<()> {
1276
        ink_env::test::run_test::<ink_env::DefaultEnvironment, _>(|_| {
1277
1278
            let mut hmap = new_hmap();
            let nothing_changed = &[
1279
1280
1281
1282
                (1, StorageEntry::new(Some(b'A'), EntryState::Mutated)),
                (2, StorageEntry::new(Some(b'B'), EntryState::Mutated)),
                (3, StorageEntry::new(None, EntryState::Preserved)),
                (4, StorageEntry::new(None, EntryState::Preserved)),
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
            ];
            // Put some values.
            assert_eq!(hmap.put_get(&1, Some(b'A')), None);
            assert_eq!(hmap.put_get(&2, Some(b'B')), None);
            assert_eq!(hmap.put_get(&3, None), None);
            assert_eq!(hmap.put_get(&4, None), None);
            assert_cached_entries(&hmap, nothing_changed);
            // Push the lazy index map onto the contract storage and then load
            // another instance of it from the contract stoarge.
            // Then: Compare both instances to be equal.
1293
            let root_key = Key::from([0x42; 32]);
1294
            SpreadLayout::push_spread(&hmap, &mut KeyPtr::from(root_key));
1295
1296
1297
            let hmap2 = <LazyHashMap<i32, u8, Blake2x256> as SpreadLayout>::pull_spread(
                &mut KeyPtr::from(root_key),
            );
1298
            assert_cached_entries(&hmap2, &[]);
1299
            assert_eq!(hmap2.key(), Some(&Key::from([0x42; 32])));
1300
1301
1302
1303
1304
1305
1306
            assert_eq!(hmap2.get(&1), Some(&b'A'));
            assert_eq!(hmap2.get(&2), Some(&b'B'));
            assert_eq!(hmap2.get(&3), None);
            assert_eq!(hmap2.get(&4), None);
            assert_cached_entries(
                &hmap2,
                &[
1307
1308
1309
1310
                    (1, StorageEntry::new(Some(b'A'), EntryState::Preserved)),
                    (2, StorageEntry::new(Some(b'B'), EntryState::Preserved)),
                    (3, StorageEntry::new(None, EntryState::Preserved)),
                    (4, StorageEntry::new(None, EntryState::Preserved)),
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
                ],
            );
            // Clear the first lazy index map instance and reload another instance
            // to check whether the associated storage has actually been freed
            // again:
            SpreadLayout::clear_spread(&hmap2, &mut KeyPtr::from(root_key));
            // The above `clear_spread` call is a no-op since lazy index map is
            // generally not aware of its associated elements. So we have to
            // manually clear them from the contract storage which is what the
            // high-level data structures like `storage::Vec` would command:
            hmap2.clear_packed_at(&1);
            hmap2.clear_packed_at(&2);
            hmap2.clear_packed_at(&3); // Not really needed here.
            hmap2.clear_packed_at(&4); // Not really needed here.
1325
1326
1327
            let hmap3 = <LazyHashMap<i32, u8, Blake2x256> as SpreadLayout>::pull_spread(
                &mut KeyPtr::from(root_key),
            );
1328
1329
1330
1331
1332
1333
1334
1335
            assert_cached_entries(&hmap3, &[]);
            assert_eq!(hmap3.get(&1), None);
            assert_eq!(hmap3.get(&2), None);
            assert_eq!(hmap3.get(&3), None);
            assert_eq!(hmap3.get(&4), None);
            assert_cached_entries(
                &hmap3,
                &[
1336
1337
1338
1339
                    (1, StorageEntry::new(None, EntryState::Preserved)),
                    (2, StorageEntry::new(None, EntryState::Preserved)),
                    (3, StorageEntry::new(None, EntryState::Preserved)),
                    (4, StorageEntry::new(None, EntryState::Preserved)),
1340
1341
1342
1343
1344
1345
                ],
            );
            Ok(())
        })
    }
}