Newer
Older
// Copyright 2018-2020 Parity Technologies (UK) Ltd.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#[cfg(test)]
mod tests;
use crate::{
serde_hex,
utils::serialize_as_byte_str,
};
use derive_more::From;
use ink_prelude::collections::btree_map::BTreeMap;
use ink_primitives::Key;
use scale_info::{
form::{
CompactForm,
Form,
MetaForm,
},
IntoCompact,
Registry,
use serde::{
de::DeserializeOwned,
Deserialize,
Serialize,
};
/// Represents the static storage layout of an ink! smart contract.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, From, Serialize, Deserialize)]
#[serde(bound(
serialize = "F::Type: Serialize, F::String: Serialize",
deserialize = "F::Type: DeserializeOwned, F::String: DeserializeOwned"
))]
#[serde(rename_all = "camelCase")]
pub enum Layout<F: Form = MetaForm> {
/// An encoded cell.
///
/// This is the only leaf node within the layout graph.
/// All layout nodes have this node type as their leafs.
///
/// This represents the encoding of a single cell mapped to a single key.
Cell(CellLayout<F>),
/// A layout that hashes values into the entire storage key space.
///
/// This is commonly used by ink! hashmaps and similar data structures.
Hash(HashLayout<F>),
/// An array of associated storage cells encoded with a given type.
///
/// This can also represent only a single cell.
Array(ArrayLayout<F>),
/// A struct layout with fields of different types.
Struct(StructLayout<F>),
/// An enum layout with a discriminant telling which variant is layed out.
Enum(EnumLayout<F>),
}
/// A pointer into some storage region.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, From)]
pub struct LayoutKey {
key: [u8; 32],
}
impl serde::Serialize for LayoutKey {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
serde_hex::serialize(&self.key, serializer)
}
}
impl<'de> serde::Deserialize<'de> for LayoutKey {
fn deserialize<D>(d: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
let mut arr = [0; 32];
serde_hex::deserialize_check_len(d, serde_hex::ExpectedLen::Exact(&mut arr[..]))?;
Ok(arr.into())
}
}
impl<'a> From<&'a Key> for LayoutKey {
fn from(key: &'a Key) -> Self {
Self {
key: key.to_bytes(),
}
}
}
impl From<Key> for LayoutKey {
fn from(key: Key) -> Self {
Self {
key: key.to_bytes(),
}
impl LayoutKey {
/// Returns the underlying bytes of the layout key.
pub fn to_bytes(&self) -> &[u8] {
&self.key
}
}
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, From, Serialize, Deserialize)]
#[serde(bound(
serialize = "F::Type: Serialize, F::String: Serialize",
deserialize = "F::Type: DeserializeOwned, F::String: DeserializeOwned"
))]
pub struct CellLayout<F: Form = MetaForm> {
/// The offset key into the storage.
key: LayoutKey,
/// The type of the encoded entity.
}
impl CellLayout {
/// Creates a new cell layout.
pub fn new<T>(key: LayoutKey) -> Self
where
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
}
}
}
impl IntoCompact for CellLayout {
type Output = CellLayout<CompactForm>;
fn into_compact(self, registry: &mut Registry) -> Self::Output {
CellLayout {
key: self.key,
ty: registry.register_type(&self.ty),
}
}
}
impl IntoCompact for Layout {
type Output = Layout<CompactForm>;
fn into_compact(self, registry: &mut Registry) -> Self::Output {
match self {
Layout::Cell(encoded_cell) => {
Layout::Cell(encoded_cell.into_compact(registry))
}
Layout::Hash(hash_layout) => Layout::Hash(hash_layout.into_compact(registry)),
Layout::Array(array_layout) => {
Layout::Array(array_layout.into_compact(registry))
}
Layout::Struct(struct_layout) => {
Layout::Struct(struct_layout.into_compact(registry))
}
Layout::Enum(enum_layout) => Layout::Enum(enum_layout.into_compact(registry)),
}
}
}
impl<F> CellLayout<F>
where
F: Form,
{
/// Returns the offset key into the storage.
pub fn key(&self) -> &LayoutKey {
&self.key
}
/// Returns the type of the encoded entity.
pub fn ty(&self) -> &F::Type {
&self.ty
}
}
/// A hashing layout potentially hitting all cells of the storage.
///
/// Every hashing layout has an offset and a strategy to compute its keys.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
#[serde(bound(
serialize = "F::Type: Serialize, F::String: Serialize",
deserialize = "F::Type: DeserializeOwned, F::String: DeserializeOwned"
))]
pub struct HashLayout<F: Form = MetaForm> {
/// The key offset used by the strategy.
offset: LayoutKey,
/// The hashing strategy to layout the underlying elements.
strategy: HashingStrategy,
/// The storage layout of the unbounded layout elements.
layout: Box<Layout<F>>,
}
impl IntoCompact for HashLayout {
type Output = HashLayout<CompactForm>;
fn into_compact(self, registry: &mut Registry) -> Self::Output {
HashLayout {
offset: self.offset,
strategy: self.strategy,
layout: Box::new(self.layout.into_compact(registry)),
}
}
}
impl HashLayout {
/// Creates a new unbounded layout.
pub fn new<K, L>(offset: K, strategy: HashingStrategy, layout: L) -> Self
where
K: Into<LayoutKey>,
L: Into<Layout>,
{
Self {
offset: offset.into(),
strategy,
layout: Box::new(layout.into()),
}
}
}
impl<F> HashLayout<F>
where
F: Form,
{
/// Returns the key offset used by the strategy.
pub fn offset(&self) -> &LayoutKey {
&self.offset
}
/// Returns the hashing strategy to layout the underlying elements.
pub fn strategy(&self) -> &HashingStrategy {
&self.strategy
}
/// Returns the storage layout of the unbounded layout elements.
pub fn layout(&self) -> &Layout<F> {
&self.layout
}
}
/// The unbounded hashing strategy.
///
/// The offset key is used as another postfix for the computation.
/// So the actual formula is: `hasher(prefix + encoded(key) + offset + postfix)`
/// Where `+` in this contexts means append of the byte slices.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
pub struct HashingStrategy {
/// One of the supported crypto hashers.
hasher: CryptoHasher,
/// An optional prefix to the computed hash.
#[serde(
serialize_with = "serialize_as_byte_str",
deserialize_with = "serde_hex::deserialize"
)]
prefix: Vec<u8>,
/// An optional postfix to the computed hash.
#[serde(
serialize_with = "serialize_as_byte_str",
deserialize_with = "serde_hex::deserialize"
)]
postfix: Vec<u8>,
}
impl HashingStrategy {
/// Creates a new unbounded hashing strategy.
pub fn new(hasher: CryptoHasher, prefix: Vec<u8>, postfix: Vec<u8>) -> Self {
Self {
hasher,
prefix,
postfix,
}
}
/// Returns the supported crypto hasher.
pub fn hasher(&self) -> &CryptoHasher {
&self.hasher
}
/// Returns the optional prefix to the computed hash.
pub fn prefix(&self) -> &[u8] {
&self.prefix
}
/// Returns the optional postfix to the computed hash.
pub fn postfix(&self) -> &[u8] {
&self.postfix
}
}
/// One of the supported crypto hashers.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
pub enum CryptoHasher {
/// The BLAKE-2 crypto hasher with an output of 256 bits.
Blake2x256,
/// The SHA-2 crypto hasher with an output of 256 bits.
Sha2x256,
/// The KECCAK crypto hasher with an output of 256 bits.
Keccak256,
}
/// A layout for an array of associated cells with the same encoding.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
#[serde(bound(
serialize = "F::Type: Serialize, F::String: Serialize",
deserialize = "F::Type: DeserializeOwned, F::String: DeserializeOwned"
))]
#[serde(rename_all = "camelCase")]
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
pub struct ArrayLayout<F: Form = MetaForm> {
/// The offset key of the array layout.
///
/// This is the same key as the 0-th element of the array layout.
offset: LayoutKey,
/// The number of elements in the array layout.
len: u32,
/// The number of cells each element in the array layout consists of.
cells_per_elem: u64,
/// The layout of the elements stored in the array layout.
layout: Box<Layout<F>>,
}
impl ArrayLayout {
/// Creates an array layout with the given length.
pub fn new<K, L>(at: K, len: u32, cells_per_elem: u64, layout: L) -> Self
where
K: Into<LayoutKey>,
L: Into<Layout>,
{
Self {
offset: at.into(),
len,
cells_per_elem,
layout: Box::new(layout.into()),
}
}
}
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
#[allow(clippy::len_without_is_empty)]
impl<F> ArrayLayout<F>
where
F: Form,
{
/// Returns the offset key of the array layout.
///
/// This is the same key as the 0-th element of the array layout.
pub fn offset(&self) -> &LayoutKey {
&self.offset
}
/// Returns the number of elements in the array layout.
pub fn len(&self) -> u32 {
self.len
}
/// Returns he number of cells each element in the array layout consists of.
pub fn cells_per_elem(&self) -> u64 {
self.cells_per_elem
}
/// Returns the layout of the elements stored in the array layout.
pub fn layout(&self) -> &Layout<F> {
&self.layout
}
}
impl IntoCompact for ArrayLayout {
type Output = ArrayLayout<CompactForm>;
fn into_compact(self, registry: &mut Registry) -> Self::Output {
ArrayLayout {
offset: self.offset,
len: self.len,
cells_per_elem: self.cells_per_elem,
layout: Box::new(self.layout.into_compact(registry)),
}
}
}
/// A struct layout with consecutive fields of different layout.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
#[serde(bound(
serialize = "F::Type: Serialize, F::String: Serialize",
deserialize = "F::Type: DeserializeOwned, F::String: DeserializeOwned"
))]
pub struct StructLayout<F: Form = MetaForm> {
/// The fields of the struct layout.
fields: Vec<FieldLayout<F>>,
}
impl StructLayout {
/// Creates a new struct layout.
pub fn new<F>(fields: F) -> Self
where
F: IntoIterator<Item = FieldLayout>,
{
Self {
fields: fields.into_iter().collect(),
}
}
}
impl<F> StructLayout<F>
where
F: Form,
{
/// Returns the fields of the struct layout.
pub fn fields(&self) -> &[FieldLayout<F>] {
&self.fields
}
}
impl IntoCompact for StructLayout {
type Output = StructLayout<CompactForm>;
fn into_compact(self, registry: &mut Registry) -> Self::Output {
StructLayout {
fields: self
.fields
.into_iter()
.map(|field| field.into_compact(registry))
.collect::<Vec<_>>(),
}
}
}
/// The layout for a particular field of a struct layout.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
#[serde(bound(
serialize = "F::Type: Serialize, F::String: Serialize",
deserialize = "F::Type: DeserializeOwned, F::String: DeserializeOwned"
))]
pub struct FieldLayout<F: Form = MetaForm> {
/// The name of the field.
///
/// Can be missing, e.g. in case of an enum tuple struct variant.
/// The kind of the field.
///
/// This is either a direct layout bound
/// or another recursive layout sub-struct.
layout: Layout<F>,
}
impl FieldLayout {
/// Creates a new field layout.
pub fn new<N, L>(name: N, layout: L) -> Self
where
N: Into<Option<&'static str>>,
L: Into<Layout>,
{
Self {
name: name.into(),
layout: layout.into(),
}
}
}
impl<F> FieldLayout<F>
where
F: Form,
{
/// Returns the name of the field.
///
/// Can be missing, e.g. in case of an enum tuple struct variant.
pub fn name(&self) -> Option<&F::String> {
self.name.as_ref()
}
/// Returns the kind of the field.
///
/// This is either a direct layout bound
/// or another recursive layout sub-struct.
pub fn layout(&self) -> &Layout<F> {
&self.layout
}
}
impl IntoCompact for FieldLayout {
type Output = FieldLayout<CompactForm>;
fn into_compact(self, registry: &mut Registry) -> Self::Output {
FieldLayout {
name: self.name.map(|name| name.into_compact(registry)),
layout: self.layout.into_compact(registry),
}
}
}
/// The discriminant of an enum variant.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
pub struct Discriminant(usize);
impl From<usize> for Discriminant {
fn from(value: usize) -> Self {
Self(value)
}
}
impl Discriminant {
/// Returns the value of the discriminant
pub fn value(&self) -> usize {
self.0
}
}
/// An enum storage layout.
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
#[serde(bound(
serialize = "F::Type: Serialize, F::String: Serialize",
deserialize = "F::Type: DeserializeOwned, F::String: DeserializeOwned"
))]
#[serde(rename_all = "camelCase")]
pub struct EnumLayout<F: Form = MetaForm> {
/// The key where the discriminant is stored to dispatch the variants.
dispatch_key: LayoutKey,
/// The variants of the enum.
variants: BTreeMap<Discriminant, StructLayout<F>>,
}
impl EnumLayout {
/// Creates a new enum layout.
pub fn new<K, V>(dispatch_key: K, variants: V) -> Self
where
K: Into<LayoutKey>,
V: IntoIterator<Item = (Discriminant, StructLayout)>,
{
Self {
dispatch_key: dispatch_key.into(),
variants: variants.into_iter().collect(),
}
}
}
impl<F> EnumLayout<F>
where
F: Form,
{
/// Returns the key where the discriminant is stored to dispatch the variants.
pub fn dispatch_key(&self) -> &LayoutKey {
&self.dispatch_key
}
/// Returns the variants of the enum.
pub fn variants(&self) -> &BTreeMap<Discriminant, StructLayout<F>> {
&self.variants
}
}
impl IntoCompact for EnumLayout {
type Output = EnumLayout<CompactForm>;
fn into_compact(self, registry: &mut Registry) -> Self::Output {
EnumLayout {
dispatch_key: self.dispatch_key,
variants: self
.variants
.into_iter()
.map(|(discriminant, layout)| {
(discriminant, layout.into_compact(registry))
})
.collect(),
}
}
}