// Copyright 2015, 2016 Ethcore (UK) Ltd. // This file is part of Parity. // Parity is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Parity is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Parity. If not, see . //! Blockchain database. use std::sync::atomic::{AtomicUsize, Ordering as AtomicOrder}; use bloomchain as bc; use util::*; use header::*; use super::extras::*; use transaction::*; use views::*; use receipt::Receipt; use blooms::{Bloom, BloomGroup}; use blockchain::block_info::{BlockInfo, BlockLocation, BranchBecomingCanonChainData}; use blockchain::best_block::BestBlock; use types::tree_route::TreeRoute; use blockchain::update::ExtrasUpdate; use blockchain::{CacheSize, ImportRoute, Config}; use db::{Writable, Readable, CacheUpdatePolicy}; const LOG_BLOOMS_LEVELS: usize = 3; const LOG_BLOOMS_ELEMENTS_PER_INDEX: usize = 16; /// Interface for querying blocks by hash and by number. pub trait BlockProvider { /// Returns true if the given block is known /// (though not necessarily a part of the canon chain). fn is_known(&self, hash: &H256) -> bool; /// Get raw block data fn block(&self, hash: &H256) -> Option; /// Get the familial details concerning a block. fn block_details(&self, hash: &H256) -> Option; /// Get the hash of given block's number. fn block_hash(&self, index: BlockNumber) -> Option; /// Get the address of transaction with given hash. fn transaction_address(&self, hash: &H256) -> Option; /// Get receipts of block with given hash. fn block_receipts(&self, hash: &H256) -> Option; /// Get the partial-header of a block. fn block_header(&self, hash: &H256) -> Option
{ self.block(hash).map(|bytes| BlockView::new(&bytes).header()) } /// Get a list of uncles for a given block. /// Returns None if block does not exist. fn uncles(&self, hash: &H256) -> Option> { self.block(hash).map(|bytes| BlockView::new(&bytes).uncles()) } /// Get a list of uncle hashes for a given block. /// Returns None if block does not exist. fn uncle_hashes(&self, hash: &H256) -> Option> { self.block(hash).map(|bytes| BlockView::new(&bytes).uncle_hashes()) } /// Get the number of given block's hash. fn block_number(&self, hash: &H256) -> Option { self.block(hash).map(|bytes| BlockView::new(&bytes).header_view().number()) } /// Get transaction with given transaction hash. fn transaction(&self, address: &TransactionAddress) -> Option { self.block(&address.block_hash).and_then(|bytes| BlockView::new(&bytes).localized_transaction_at(address.index)) } /// Get transaction receipt. fn transaction_receipt(&self, address: &TransactionAddress) -> Option { self.block_receipts(&address.block_hash).and_then(|br| br.receipts.into_iter().nth(address.index)) } /// Get a list of transactions for a given block. /// Returns None if block does not exist. fn transactions(&self, hash: &H256) -> Option> { self.block(hash).map(|bytes| BlockView::new(&bytes).localized_transactions()) } /// Returns reference to genesis hash. fn genesis_hash(&self) -> H256 { self.block_hash(0).expect("Genesis hash should always exist") } /// Returns the header of the genesis block. fn genesis_header(&self) -> Header { self.block_header(&self.genesis_hash()).unwrap() } /// Returns numbers of blocks containing given bloom. fn blocks_with_bloom(&self, bloom: &H2048, from_block: BlockNumber, to_block: BlockNumber) -> Vec; } #[derive(Debug, Hash, Eq, PartialEq, Clone)] enum CacheID { Block(H256), BlockDetails(H256), BlockHashes(BlockNumber), TransactionAddresses(H256), BlocksBlooms(LogGroupPosition), BlockReceipts(H256), } struct CacheManager { cache_usage: VecDeque>, in_use: HashSet, } impl bc::group::BloomGroupDatabase for BlockChain { fn blooms_at(&self, position: &bc::group::GroupPosition) -> Option { let position = LogGroupPosition::from(position.clone()); self.note_used(CacheID::BlocksBlooms(position.clone())); self.extras_db.read_with_cache(&self.blocks_blooms, &position).map(Into::into) } } /// Structure providing fast access to blockchain data. /// /// **Does not do input data verification.** pub struct BlockChain { // All locks must be captured in the order declared here. pref_cache_size: AtomicUsize, max_cache_size: AtomicUsize, blooms_config: bc::Config, best_block: RwLock, // block cache blocks: RwLock>, // extra caches block_details: RwLock>, block_hashes: RwLock>, transaction_addresses: RwLock>, blocks_blooms: RwLock>, block_receipts: RwLock>, extras_db: Database, blocks_db: Database, cache_man: RwLock, insert_lock: Mutex<()> } impl BlockProvider for BlockChain { /// Returns true if the given block is known /// (though not necessarily a part of the canon chain). fn is_known(&self, hash: &H256) -> bool { self.extras_db.exists_with_cache(&self.block_details, hash) } /// Get raw block data fn block(&self, hash: &H256) -> Option { { let read = self.blocks.read().unwrap(); if let Some(v) = read.get(hash) { return Some(v.clone()); } } let opt = self.blocks_db.get(hash) .expect("Low level database error. Some issue with disk?"); self.note_used(CacheID::Block(hash.clone())); match opt { Some(b) => { let bytes: Bytes = b.to_vec(); let mut write = self.blocks.write().unwrap(); write.insert(hash.clone(), bytes.clone()); Some(bytes) }, None => None } } /// Get the familial details concerning a block. fn block_details(&self, hash: &H256) -> Option { self.note_used(CacheID::BlockDetails(hash.clone())); self.extras_db.read_with_cache(&self.block_details, hash) } /// Get the hash of given block's number. fn block_hash(&self, index: BlockNumber) -> Option { self.note_used(CacheID::BlockHashes(index)); self.extras_db.read_with_cache(&self.block_hashes, &index) } /// Get the address of transaction with given hash. fn transaction_address(&self, hash: &H256) -> Option { self.note_used(CacheID::TransactionAddresses(hash.clone())); self.extras_db.read_with_cache(&self.transaction_addresses, hash) } /// Get receipts of block with given hash. fn block_receipts(&self, hash: &H256) -> Option { self.note_used(CacheID::BlockReceipts(hash.clone())); self.extras_db.read_with_cache(&self.block_receipts, hash) } /// Returns numbers of blocks containing given bloom. fn blocks_with_bloom(&self, bloom: &H2048, from_block: BlockNumber, to_block: BlockNumber) -> Vec { let range = from_block as bc::Number..to_block as bc::Number; let chain = bc::group::BloomGroupChain::new(self.blooms_config, self); chain.with_bloom(&range, &Bloom::from(bloom.clone()).into()) .into_iter() .map(|b| b as BlockNumber) .collect() } } const COLLECTION_QUEUE_SIZE: usize = 8; pub struct AncestryIter<'a> { current: H256, chain: &'a BlockChain, } impl<'a> Iterator for AncestryIter<'a> { type Item = H256; fn next(&mut self) -> Option { if self.current.is_zero() { Option::None } else { let mut n = self.chain.block_details(&self.current).unwrap().parent; mem::swap(&mut self.current, &mut n); Some(n) } } } impl BlockChain { /// Create new instance of blockchain from given Genesis pub fn new(config: Config, genesis: &[u8], path: &Path) -> BlockChain { // open extras db let mut extras_path = path.to_path_buf(); extras_path.push("extras"); let extras_db = match config.db_cache_size { None => Database::open_default(extras_path.to_str().unwrap()).unwrap(), Some(cache_size) => Database::open( &DatabaseConfig::with_cache(cache_size/2), extras_path.to_str().unwrap()).unwrap(), }; // open blocks db let mut blocks_path = path.to_path_buf(); blocks_path.push("blocks"); let blocks_db = match config.db_cache_size { None => Database::open_default(blocks_path.to_str().unwrap()).unwrap(), Some(cache_size) => Database::open( &DatabaseConfig::with_cache(cache_size/2), blocks_path.to_str().unwrap()).unwrap(), }; let mut cache_man = CacheManager{cache_usage: VecDeque::new(), in_use: HashSet::new()}; (0..COLLECTION_QUEUE_SIZE).foreach(|_| cache_man.cache_usage.push_back(HashSet::new())); let bc = BlockChain { pref_cache_size: AtomicUsize::new(config.pref_cache_size), max_cache_size: AtomicUsize::new(config.max_cache_size), blooms_config: bc::Config { levels: LOG_BLOOMS_LEVELS, elements_per_index: LOG_BLOOMS_ELEMENTS_PER_INDEX, }, best_block: RwLock::new(BestBlock::default()), blocks: RwLock::new(HashMap::new()), block_details: RwLock::new(HashMap::new()), block_hashes: RwLock::new(HashMap::new()), transaction_addresses: RwLock::new(HashMap::new()), blocks_blooms: RwLock::new(HashMap::new()), block_receipts: RwLock::new(HashMap::new()), extras_db: extras_db, blocks_db: blocks_db, cache_man: RwLock::new(cache_man), insert_lock: Mutex::new(()), }; // load best block let best_block_hash = match bc.extras_db.get(b"best").unwrap() { Some(best) => H256::from_slice(&best), None => { // best block does not exist // we need to insert genesis into the cache let block = BlockView::new(genesis); let header = block.header_view(); let hash = block.sha3(); let details = BlockDetails { number: header.number(), total_difficulty: header.difficulty(), parent: header.parent_hash(), children: vec![] }; bc.blocks_db.put(&hash, genesis).unwrap(); let batch = DBTransaction::new(); batch.write(&hash, &details); batch.write(&header.number(), &hash); batch.put(b"best", &hash).unwrap(); bc.extras_db.write(batch).unwrap(); hash } }; { let mut best_block = bc.best_block.write().unwrap(); best_block.number = bc.block_number(&best_block_hash).unwrap(); best_block.total_difficulty = bc.block_details(&best_block_hash).unwrap().total_difficulty; best_block.hash = best_block_hash; } bc } /// Set the cache configuration. pub fn configure_cache(&self, pref_cache_size: usize, max_cache_size: usize) { self.pref_cache_size.store(pref_cache_size, AtomicOrder::Relaxed); self.max_cache_size.store(max_cache_size, AtomicOrder::Relaxed); } /// Returns a tree route between `from` and `to`, which is a tuple of: /// /// - a vector of hashes of all blocks, ordered from `from` to `to`. /// /// - common ancestor of these blocks. /// /// - an index where best common ancestor would be /// /// 1.) from newer to older /// /// - bc: `A1 -> A2 -> A3 -> A4 -> A5` /// - from: A5, to: A4 /// - route: /// /// ```json /// { blocks: [A5], ancestor: A4, index: 1 } /// ``` /// /// 2.) from older to newer /// /// - bc: `A1 -> A2 -> A3 -> A4 -> A5` /// - from: A3, to: A4 /// - route: /// /// ```json /// { blocks: [A4], ancestor: A3, index: 0 } /// ``` /// /// 3.) fork: /// /// - bc: /// /// ```text /// A1 -> A2 -> A3 -> A4 /// -> B3 -> B4 /// ``` /// - from: B4, to: A4 /// - route: /// /// ```json /// { blocks: [B4, B3, A3, A4], ancestor: A2, index: 2 } /// ``` pub fn tree_route(&self, from: H256, to: H256) -> TreeRoute { let mut from_branch = vec![]; let mut to_branch = vec![]; let mut from_details = self.block_details(&from).expect(&format!("0. Expected to find details for block {:?}", from)); let mut to_details = self.block_details(&to).expect(&format!("1. Expected to find details for block {:?}", to)); let mut current_from = from; let mut current_to = to; // reset from && to to the same level while from_details.number > to_details.number { from_branch.push(current_from); current_from = from_details.parent.clone(); from_details = self.block_details(&from_details.parent).expect(&format!("2. Expected to find details for block {:?}", from_details.parent)); } while to_details.number > from_details.number { to_branch.push(current_to); current_to = to_details.parent.clone(); to_details = self.block_details(&to_details.parent).expect(&format!("3. Expected to find details for block {:?}", to_details.parent)); } assert_eq!(from_details.number, to_details.number); // move to shared parent while current_from != current_to { from_branch.push(current_from); current_from = from_details.parent.clone(); from_details = self.block_details(&from_details.parent).expect(&format!("4. Expected to find details for block {:?}", from_details.parent)); to_branch.push(current_to); current_to = to_details.parent.clone(); to_details = self.block_details(&to_details.parent).expect(&format!("5. Expected to find details for block {:?}", from_details.parent)); } let index = from_branch.len(); from_branch.extend(to_branch.into_iter().rev()); TreeRoute { blocks: from_branch, ancestor: current_from, index: index } } #[cfg_attr(feature="dev", allow(similar_names))] /// Inserts the block into backing cache database. /// Expects the block to be valid and already verified. /// If the block is already known, does nothing. pub fn insert_block(&self, bytes: &[u8], receipts: Vec) -> ImportRoute { // create views onto rlp let block = BlockView::new(bytes); let header = block.header_view(); let hash = header.sha3(); if self.is_known(&hash) { return ImportRoute::none(); } let _lock = self.insert_lock.lock(); // store block in db self.blocks_db.put(&hash, &bytes).unwrap(); let info = self.block_info(bytes); self.apply_update(ExtrasUpdate { block_hashes: self.prepare_block_hashes_update(bytes, &info), block_details: self.prepare_block_details_update(bytes, &info), block_receipts: self.prepare_block_receipts_update(receipts, &info), transactions_addresses: self.prepare_transaction_addresses_update(bytes, &info), blocks_blooms: self.prepare_block_blooms_update(bytes, &info), info: info.clone(), }); ImportRoute::from(info) } /// Applies extras update. fn apply_update(&self, update: ExtrasUpdate) { let batch = DBTransaction::new(); batch.put(b"best", &update.info.hash).unwrap(); { for hash in update.block_details.keys().cloned() { self.note_used(CacheID::BlockDetails(hash)); } let mut write_details = self.block_details.write().unwrap(); batch.extend_with_cache(write_details.deref_mut(), update.block_details, CacheUpdatePolicy::Overwrite); } { let mut write_receipts = self.block_receipts.write().unwrap(); batch.extend_with_cache(write_receipts.deref_mut(), update.block_receipts, CacheUpdatePolicy::Remove); } { let mut write_blocks_blooms = self.blocks_blooms.write().unwrap(); batch.extend_with_cache(write_blocks_blooms.deref_mut(), update.blocks_blooms, CacheUpdatePolicy::Remove); } // These cached values must be updated last and togeterh { let mut best_block = self.best_block.write().unwrap(); let mut write_hashes = self.block_hashes.write().unwrap(); let mut write_txs = self.transaction_addresses.write().unwrap(); // update best block match update.info.location { BlockLocation::Branch => (), _ => { *best_block = BestBlock { hash: update.info.hash, number: update.info.number, total_difficulty: update.info.total_difficulty }; } } batch.extend_with_cache(write_hashes.deref_mut(), update.block_hashes, CacheUpdatePolicy::Remove); batch.extend_with_cache(write_txs.deref_mut(), update.transactions_addresses, CacheUpdatePolicy::Remove); // update extras database self.extras_db.write(batch).unwrap(); } } /// Iterator that lists `first` and then all of `first`'s ancestors, by hash. pub fn ancestry_iter(&self, first: H256) -> Option { if self.is_known(&first) { Some(AncestryIter { current: first, chain: &self, }) } else { None } } /// Given a block's `parent`, find every block header which represents a valid possible uncle. pub fn find_uncle_headers(&self, parent: &H256, uncle_generations: usize) -> Option> { self.find_uncle_hashes(parent, uncle_generations).map(|v| v.into_iter().filter_map(|h| self.block_header(&h)).collect()) } /// Given a block's `parent`, find every block hash which represents a valid possible uncle. pub fn find_uncle_hashes(&self, parent: &H256, uncle_generations: usize) -> Option> { if !self.is_known(parent) { return None; } let mut excluded = HashSet::new(); for a in self.ancestry_iter(parent.clone()).unwrap().take(uncle_generations) { excluded.extend(self.uncle_hashes(&a).unwrap().into_iter()); excluded.insert(a); } let mut ret = Vec::new(); for a in self.ancestry_iter(parent.clone()).unwrap().skip(1).take(uncle_generations) { ret.extend(self.block_details(&a).unwrap().children.iter() .filter(|h| !excluded.contains(h)) ); } Some(ret) } /// Get inserted block info which is critical to prepare extras updates. fn block_info(&self, block_bytes: &[u8]) -> BlockInfo { let block = BlockView::new(block_bytes); let header = block.header_view(); let hash = block.sha3(); let number = header.number(); let parent_hash = header.parent_hash(); let parent_details = self.block_details(&parent_hash).expect(format!("Invalid parent hash: {:?}", parent_hash).as_ref()); let total_difficulty = parent_details.total_difficulty + header.difficulty(); let is_new_best = total_difficulty > self.best_block_total_difficulty(); BlockInfo { hash: hash, number: number, total_difficulty: total_difficulty, location: if is_new_best { // on new best block we need to make sure that all ancestors // are moved to "canon chain" // find the route between old best block and the new one let best_hash = self.best_block_hash(); let route = self.tree_route(best_hash, parent_hash); assert_eq!(number, parent_details.number + 1); match route.blocks.len() { 0 => BlockLocation::CanonChain, _ => { let retracted = route.blocks.iter().take(route.index).cloned().collect::>(); BlockLocation::BranchBecomingCanonChain(BranchBecomingCanonChainData { ancestor: route.ancestor, enacted: route.blocks.into_iter().skip(route.index).collect(), retracted: retracted.into_iter().rev().collect(), }) } } } else { BlockLocation::Branch } } } /// This function returns modified block hashes. fn prepare_block_hashes_update(&self, block_bytes: &[u8], info: &BlockInfo) -> HashMap { let mut block_hashes = HashMap::new(); let block = BlockView::new(block_bytes); let header = block.header_view(); let number = header.number(); match info.location { BlockLocation::Branch => (), BlockLocation::CanonChain => { block_hashes.insert(number, info.hash.clone()); }, BlockLocation::BranchBecomingCanonChain(ref data) => { let ancestor_number = self.block_number(&data.ancestor).unwrap(); let start_number = ancestor_number + 1; for (index, hash) in data.enacted.iter().cloned().enumerate() { block_hashes.insert(start_number + index as BlockNumber, hash); } block_hashes.insert(number, info.hash.clone()); } } block_hashes } /// This function returns modified block details. fn prepare_block_details_update(&self, block_bytes: &[u8], info: &BlockInfo) -> HashMap { let block = BlockView::new(block_bytes); let header = block.header_view(); let parent_hash = header.parent_hash(); // update parent let mut parent_details = self.block_details(&parent_hash).expect(format!("Invalid parent hash: {:?}", parent_hash).as_ref()); parent_details.children.push(info.hash.clone()); // create current block details let details = BlockDetails { number: header.number(), total_difficulty: info.total_difficulty, parent: parent_hash.clone(), children: vec![] }; // write to batch let mut block_details = HashMap::new(); block_details.insert(parent_hash, parent_details); block_details.insert(info.hash.clone(), details); block_details } /// This function returns modified block receipts. fn prepare_block_receipts_update(&self, receipts: Vec, info: &BlockInfo) -> HashMap { let mut block_receipts = HashMap::new(); block_receipts.insert(info.hash.clone(), BlockReceipts::new(receipts)); block_receipts } /// This function returns modified transaction addresses. fn prepare_transaction_addresses_update(&self, block_bytes: &[u8], info: &BlockInfo) -> HashMap { let block = BlockView::new(block_bytes); let transaction_hashes = block.transaction_hashes(); transaction_hashes.into_iter() .enumerate() .fold(HashMap::new(), |mut acc, (i ,tx_hash)| { acc.insert(tx_hash, TransactionAddress { block_hash: info.hash.clone(), index: i }); acc }) } /// This functions returns modified blocks blooms. /// /// To accelerate blooms lookups, blomms are stored in multiple /// layers (BLOOM_LEVELS, currently 3). /// ChainFilter is responsible for building and rebuilding these layers. /// It returns them in HashMap, where values are Blooms and /// keys are BloomIndexes. BloomIndex represents bloom location on one /// of these layers. /// /// To reduce number of queries to databse, block blooms are stored /// in BlocksBlooms structure which contains info about several /// (BLOOM_INDEX_SIZE, currently 16) consecutive blocks blooms. /// /// Later, BloomIndexer is used to map bloom location on filter layer (BloomIndex) /// to bloom location in database (BlocksBloomLocation). /// fn prepare_block_blooms_update(&self, block_bytes: &[u8], info: &BlockInfo) -> HashMap { let block = BlockView::new(block_bytes); let header = block.header_view(); let log_blooms = match info.location { BlockLocation::Branch => HashMap::new(), BlockLocation::CanonChain => { let chain = bc::group::BloomGroupChain::new(self.blooms_config, self); chain.insert(info.number as bc::Number, Bloom::from(header.log_bloom()).into()) }, BlockLocation::BranchBecomingCanonChain(ref data) => { let ancestor_number = self.block_number(&data.ancestor).unwrap(); let start_number = ancestor_number + 1; let range = start_number as bc::Number..self.best_block_number() as bc::Number; let mut blooms: Vec = data.enacted.iter() .map(|hash| self.block(hash).unwrap()) .map(|bytes| BlockView::new(&bytes).header_view().log_bloom()) .map(Bloom::from) .map(Into::into) .collect(); blooms.push(Bloom::from(header.log_bloom()).into()); let chain = bc::group::BloomGroupChain::new(self.blooms_config, self); chain.replace(&range, blooms) } }; log_blooms.into_iter() .map(|p| (From::from(p.0), From::from(p.1))) .collect() } /// Get best block hash. pub fn best_block_hash(&self) -> H256 { self.best_block.read().unwrap().hash.clone() } /// Get best block number. pub fn best_block_number(&self) -> BlockNumber { self.best_block.read().unwrap().number } /// Get best block total difficulty. pub fn best_block_total_difficulty(&self) -> U256 { self.best_block.read().unwrap().total_difficulty } /// Get current cache size. pub fn cache_size(&self) -> CacheSize { CacheSize { blocks: self.blocks.read().unwrap().heap_size_of_children(), block_details: self.block_details.read().unwrap().heap_size_of_children(), transaction_addresses: self.transaction_addresses.read().unwrap().heap_size_of_children(), blocks_blooms: self.blocks_blooms.read().unwrap().heap_size_of_children(), block_receipts: self.block_receipts.read().unwrap().heap_size_of_children(), } } /// Let the cache system know that a cacheable item has been used. fn note_used(&self, id: CacheID) { let mut cache_man = self.cache_man.write().unwrap(); if !cache_man.cache_usage[0].contains(&id) { cache_man.cache_usage[0].insert(id.clone()); if cache_man.in_use.contains(&id) { if let Some(c) = cache_man.cache_usage.iter_mut().skip(1).find(|e|e.contains(&id)) { c.remove(&id); } } else { cache_man.in_use.insert(id); } } } /// Ticks our cache system and throws out any old data. pub fn collect_garbage(&self) { if self.cache_size().total() < self.pref_cache_size.load(AtomicOrder::Relaxed) { return; } for _ in 0..COLLECTION_QUEUE_SIZE { { let mut blocks = self.blocks.write().unwrap(); let mut block_details = self.block_details.write().unwrap(); let mut block_hashes = self.block_hashes.write().unwrap(); let mut transaction_addresses = self.transaction_addresses.write().unwrap(); let mut blocks_blooms = self.blocks_blooms.write().unwrap(); let mut block_receipts = self.block_receipts.write().unwrap(); let mut cache_man = self.cache_man.write().unwrap(); for id in cache_man.cache_usage.pop_back().unwrap().into_iter() { cache_man.in_use.remove(&id); match id { CacheID::Block(h) => { blocks.remove(&h); }, CacheID::BlockDetails(h) => { block_details.remove(&h); } CacheID::BlockHashes(h) => { block_hashes.remove(&h); } CacheID::TransactionAddresses(h) => { transaction_addresses.remove(&h); } CacheID::BlocksBlooms(h) => { blocks_blooms.remove(&h); } CacheID::BlockReceipts(h) => { block_receipts.remove(&h); } } } cache_man.cache_usage.push_front(HashSet::new()); // TODO: handle block_hashes properly. block_hashes.clear(); blocks.shrink_to_fit(); block_details.shrink_to_fit(); block_hashes.shrink_to_fit(); transaction_addresses.shrink_to_fit(); blocks_blooms.shrink_to_fit(); block_receipts.shrink_to_fit(); } if self.cache_size().total() < self.max_cache_size.load(AtomicOrder::Relaxed) { break; } } // TODO: m_lastCollection = chrono::system_clock::now(); } } #[cfg(test)] mod tests { #![cfg_attr(feature="dev", allow(similar_names))] use std::str::FromStr; use rustc_serialize::hex::FromHex; use util::hash::*; use util::sha3::Hashable; use blockchain::{BlockProvider, BlockChain, Config, ImportRoute}; use tests::helpers::*; use devtools::*; use blockchain::generator::{ChainGenerator, ChainIterator, BlockFinalizer}; use views::BlockView; #[test] fn basic_blockchain_insert() { let mut canon_chain = ChainGenerator::default(); let mut finalizer = BlockFinalizer::default(); let genesis = canon_chain.generate(&mut finalizer).unwrap(); let first = canon_chain.generate(&mut finalizer).unwrap(); let genesis_hash = BlockView::new(&genesis).header_view().sha3(); let first_hash = BlockView::new(&first).header_view().sha3(); let temp = RandomTempPath::new(); let bc = BlockChain::new(Config::default(), &genesis, temp.as_path()); assert_eq!(bc.genesis_hash(), genesis_hash.clone()); assert_eq!(bc.best_block_number(), 0); assert_eq!(bc.best_block_hash(), genesis_hash.clone()); assert_eq!(bc.block_hash(0), Some(genesis_hash.clone())); assert_eq!(bc.block_hash(1), None); assert_eq!(bc.block_details(&genesis_hash).unwrap().children, vec![]); bc.insert_block(&first, vec![]); assert_eq!(bc.block_hash(0), Some(genesis_hash.clone())); assert_eq!(bc.best_block_number(), 1); assert_eq!(bc.best_block_hash(), first_hash.clone()); assert_eq!(bc.block_hash(1), Some(first_hash.clone())); assert_eq!(bc.block_details(&first_hash).unwrap().parent, genesis_hash.clone()); assert_eq!(bc.block_details(&genesis_hash).unwrap().children, vec![first_hash.clone()]); assert_eq!(bc.block_hash(2), None); } #[test] fn check_ancestry_iter() { let mut canon_chain = ChainGenerator::default(); let mut finalizer = BlockFinalizer::default(); let genesis = canon_chain.generate(&mut finalizer).unwrap(); let genesis_hash = BlockView::new(&genesis).header_view().sha3(); let temp = RandomTempPath::new(); let bc = BlockChain::new(Config::default(), &genesis, temp.as_path()); let mut block_hashes = vec![genesis_hash.clone()]; for _ in 0..10 { let block = canon_chain.generate(&mut finalizer).unwrap(); block_hashes.push(BlockView::new(&block).header_view().sha3()); bc.insert_block(&block, vec![]); } block_hashes.reverse(); assert_eq!(bc.ancestry_iter(block_hashes[0].clone()).unwrap().collect::>(), block_hashes) } #[test] #[cfg_attr(feature="dev", allow(cyclomatic_complexity))] fn test_find_uncles() { let mut canon_chain = ChainGenerator::default(); let mut finalizer = BlockFinalizer::default(); let genesis = canon_chain.generate(&mut finalizer).unwrap(); let b1b = canon_chain.fork(1).generate(&mut finalizer.fork()).unwrap(); let b1a = canon_chain.generate(&mut finalizer).unwrap(); let b2b = canon_chain.fork(1).generate(&mut finalizer.fork()).unwrap(); let b2a = canon_chain.generate(&mut finalizer).unwrap(); let b3b = canon_chain.fork(1).generate(&mut finalizer.fork()).unwrap(); let b3a = canon_chain.generate(&mut finalizer).unwrap(); let b4b = canon_chain.fork(1).generate(&mut finalizer.fork()).unwrap(); let b4a = canon_chain.generate(&mut finalizer).unwrap(); let b5b = canon_chain.fork(1).generate(&mut finalizer.fork()).unwrap(); let b5a = canon_chain.generate(&mut finalizer).unwrap(); let temp = RandomTempPath::new(); let bc = BlockChain::new(Config::default(), &genesis, temp.as_path()); bc.insert_block(&b1a, vec![]); bc.insert_block(&b1b, vec![]); bc.insert_block(&b2a, vec![]); bc.insert_block(&b2b, vec![]); bc.insert_block(&b3a, vec![]); bc.insert_block(&b3b, vec![]); bc.insert_block(&b4a, vec![]); bc.insert_block(&b4b, vec![]); bc.insert_block(&b5a, vec![]); bc.insert_block(&b5b, vec![]); assert_eq!( [&b4b, &b3b, &b2b].iter().map(|b| BlockView::new(b).header()).collect::>(), bc.find_uncle_headers(&BlockView::new(&b4a).header_view().sha3(), 3).unwrap() ); // TODO: insert block that already includes one of them as an uncle to check it's not allowed. } #[test] #[cfg_attr(feature="dev", allow(cyclomatic_complexity))] fn test_small_fork() { let mut canon_chain = ChainGenerator::default(); let mut finalizer = BlockFinalizer::default(); let genesis = canon_chain.generate(&mut finalizer).unwrap(); let b1 = canon_chain.generate(&mut finalizer).unwrap(); let b2 = canon_chain.generate(&mut finalizer).unwrap(); let b3b = canon_chain.fork(1).generate(&mut finalizer.fork()).unwrap(); let b3a = canon_chain.generate(&mut finalizer).unwrap(); let genesis_hash = BlockView::new(&genesis).header_view().sha3(); let b1_hash= BlockView::new(&b1).header_view().sha3(); let b2_hash= BlockView::new(&b2).header_view().sha3(); let b3a_hash= BlockView::new(&b3a).header_view().sha3(); let b3b_hash= BlockView::new(&b3b).header_view().sha3(); // b3a is a part of canon chain, whereas b3b is part of sidechain let best_block_hash = b3a_hash.clone(); let temp = RandomTempPath::new(); let bc = BlockChain::new(Config::default(), &genesis, temp.as_path()); let ir1 = bc.insert_block(&b1, vec![]); let ir2 = bc.insert_block(&b2, vec![]); let ir3b = bc.insert_block(&b3b, vec![]); let ir3a = bc.insert_block(&b3a, vec![]); assert_eq!(ir1, ImportRoute { enacted: vec![b1_hash], retracted: vec![], omitted: vec![], }); assert_eq!(ir2, ImportRoute { enacted: vec![b2_hash], retracted: vec![], omitted: vec![], }); assert_eq!(ir3b, ImportRoute { enacted: vec![b3b_hash], retracted: vec![], omitted: vec![], }); assert_eq!(ir3a, ImportRoute { enacted: vec![b3a_hash], retracted: vec![b3b_hash], omitted: vec![], }); assert_eq!(bc.best_block_hash(), best_block_hash); assert_eq!(bc.block_number(&genesis_hash).unwrap(), 0); assert_eq!(bc.block_number(&b1_hash).unwrap(), 1); assert_eq!(bc.block_number(&b2_hash).unwrap(), 2); assert_eq!(bc.block_number(&b3a_hash).unwrap(), 3); assert_eq!(bc.block_number(&b3b_hash).unwrap(), 3); assert_eq!(bc.block_hash(0).unwrap(), genesis_hash); assert_eq!(bc.block_hash(1).unwrap(), b1_hash); assert_eq!(bc.block_hash(2).unwrap(), b2_hash); assert_eq!(bc.block_hash(3).unwrap(), b3a_hash); // test trie route let r0_1 = bc.tree_route(genesis_hash.clone(), b1_hash.clone()); assert_eq!(r0_1.ancestor, genesis_hash); assert_eq!(r0_1.blocks, [b1_hash.clone()]); assert_eq!(r0_1.index, 0); let r0_2 = bc.tree_route(genesis_hash.clone(), b2_hash.clone()); assert_eq!(r0_2.ancestor, genesis_hash); assert_eq!(r0_2.blocks, [b1_hash.clone(), b2_hash.clone()]); assert_eq!(r0_2.index, 0); let r1_3a = bc.tree_route(b1_hash.clone(), b3a_hash.clone()); assert_eq!(r1_3a.ancestor, b1_hash); assert_eq!(r1_3a.blocks, [b2_hash.clone(), b3a_hash.clone()]); assert_eq!(r1_3a.index, 0); let r1_3b = bc.tree_route(b1_hash.clone(), b3b_hash.clone()); assert_eq!(r1_3b.ancestor, b1_hash); assert_eq!(r1_3b.blocks, [b2_hash.clone(), b3b_hash.clone()]); assert_eq!(r1_3b.index, 0); let r3a_3b = bc.tree_route(b3a_hash.clone(), b3b_hash.clone()); assert_eq!(r3a_3b.ancestor, b2_hash); assert_eq!(r3a_3b.blocks, [b3a_hash.clone(), b3b_hash.clone()]); assert_eq!(r3a_3b.index, 1); let r1_0 = bc.tree_route(b1_hash.clone(), genesis_hash.clone()); assert_eq!(r1_0.ancestor, genesis_hash); assert_eq!(r1_0.blocks, [b1_hash.clone()]); assert_eq!(r1_0.index, 1); let r2_0 = bc.tree_route(b2_hash.clone(), genesis_hash.clone()); assert_eq!(r2_0.ancestor, genesis_hash); assert_eq!(r2_0.blocks, [b2_hash.clone(), b1_hash.clone()]); assert_eq!(r2_0.index, 2); let r3a_1 = bc.tree_route(b3a_hash.clone(), b1_hash.clone()); assert_eq!(r3a_1.ancestor, b1_hash); assert_eq!(r3a_1.blocks, [b3a_hash.clone(), b2_hash.clone()]); assert_eq!(r3a_1.index, 2); let r3b_1 = bc.tree_route(b3b_hash.clone(), b1_hash.clone()); assert_eq!(r3b_1.ancestor, b1_hash); assert_eq!(r3b_1.blocks, [b3b_hash.clone(), b2_hash.clone()]); assert_eq!(r3b_1.index, 2); let r3b_3a = bc.tree_route(b3b_hash.clone(), b3a_hash.clone()); assert_eq!(r3b_3a.ancestor, b2_hash); assert_eq!(r3b_3a.blocks, [b3b_hash.clone(), b3a_hash.clone()]); assert_eq!(r3b_3a.index, 1); } #[test] fn test_reopen_blockchain_db() { let mut canon_chain = ChainGenerator::default(); let mut finalizer = BlockFinalizer::default(); let genesis = canon_chain.generate(&mut finalizer).unwrap(); let first = canon_chain.generate(&mut finalizer).unwrap(); let genesis_hash = BlockView::new(&genesis).header_view().sha3(); let first_hash = BlockView::new(&first).header_view().sha3(); let temp = RandomTempPath::new(); { let bc = BlockChain::new(Config::default(), &genesis, temp.as_path()); assert_eq!(bc.best_block_hash(), genesis_hash); bc.insert_block(&first, vec![]); assert_eq!(bc.best_block_hash(), first_hash); } { let bc = BlockChain::new(Config::default(), &genesis, temp.as_path()); assert_eq!(bc.best_block_hash(), first_hash); } } #[test] fn can_contain_arbitrary_block_sequence() { let bc_result = generate_dummy_blockchain(50); let bc = bc_result.reference(); assert_eq!(bc.best_block_number(), 49); } #[test] fn can_collect_garbage() { let bc_result = generate_dummy_blockchain(3000); let bc = bc_result.reference(); assert_eq!(bc.best_block_number(), 2999); let best_hash = bc.best_block_hash(); let mut block_header = bc.block_header(&best_hash); while !block_header.is_none() { block_header = bc.block_header(&block_header.unwrap().parent_hash); } assert!(bc.cache_size().blocks > 1024 * 1024); for _ in 0..2 { bc.collect_garbage(); } assert!(bc.cache_size().blocks < 1024 * 1024); } #[test] fn can_contain_arbitrary_block_sequence_with_extra() { let bc_result = generate_dummy_blockchain_with_extra(25); let bc = bc_result.reference(); assert_eq!(bc.best_block_number(), 24); } #[test] fn can_contain_only_genesis_block() { let bc_result = generate_dummy_empty_blockchain(); let bc = bc_result.reference(); assert_eq!(bc.best_block_number(), 0); } #[test] fn find_transaction_by_hash() { let genesis = "f901fcf901f7a00000000000000000000000000000000000000000000000000000000000000000a01dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347948888f1f195afa192cfee860698584c030f4c9db1a0af81e09f8c46ca322193edfda764fa7e88e81923f802f1d325ec0b0308ac2cd0a056e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421a056e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421b9010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000830200008083023e38808454c98c8142a056e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421880102030405060708c0c0".from_hex().unwrap(); let b1 = "f904a8f901faa0ce1f26f798dd03c8782d63b3e42e79a64eaea5694ea686ac5d7ce3df5171d1aea01dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347948888f1f195afa192cfee860698584c030f4c9db1a0a65c2364cd0f1542d761823dc0109c6b072f14c20459598c5455c274601438f4a070616ebd7ad2ed6fb7860cf7e9df00163842351c38a87cac2c1cb193895035a2a05c5b4fc43c2d45787f54e1ae7d27afdb4ad16dfc567c5692070d5c4556e0b1d7b9010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000830200000183023ec683021536845685109780a029f07836e4e59229b3a065913afc27702642c683bba689910b2b2fd45db310d3888957e6d004a31802f902a7f85f800a8255f094aaaf5374fce5edbc8e2a8697c15331677e6ebf0b0a801ca0575da4e21b66fa764be5f74da9389e67693d066fb0d1312e19e17e501da00ecda06baf5a5327595f6619dfc2fcb3f2e6fb410b5810af3cb52d0e7508038e91a188f85f010a82520894bbbf5374fce5edbc8e2a8697c15331677e6ebf0b0a801ba04fa966bf34b93abc1bcd665554b7f316b50f928477b50be0f3285ead29d18c5ba017bba0eeec1625ab433746955e125d46d80b7fdc97386c51266f842d8e02192ef85f020a82520894bbbf5374fce5edbc8e2a8697c15331677e6ebf0b0a801ca004377418ae981cc32b1312b4a427a1d69a821b28db8584f5f2bd8c6d42458adaa053a1dba1af177fac92f3b6af0a9fa46a22adf56e686c93794b6a012bf254abf5f85f030a82520894bbbf5374fce5edbc8e2a8697c15331677e6ebf0b0a801ca04fe13febd28a05f4fcb2f451d7ddc2dda56486d9f8c79a62b0ba4da775122615a0651b2382dd402df9ebc27f8cb4b2e0f3cea68dda2dca0ee9603608f0b6f51668f85f040a82520894bbbf5374fce5edbc8e2a8697c15331677e6ebf0b0a801ba078e6a0ba086a08f8450e208a399bb2f2d2a0d984acd2517c7c7df66ccfab567da013254002cd45a97fac049ae00afbc43ed0d9961d0c56a3b2382c80ce41c198ddf85f050a82520894bbbf5374fce5edbc8e2a8697c15331677e6ebf0b0a801ba0a7174d8f43ea71c8e3ca9477691add8d80ac8e0ed89d8d8b572041eef81f4a54a0534ea2e28ec4da3b5b944b18c51ec84a5cf35f5b3343c5fb86521fd2d388f506f85f060a82520894bbbf5374fce5edbc8e2a8697c15331677e6ebf0b0a801ba034bd04065833536a10c77ee2a43a5371bc6d34837088b861dd9d4b7f44074b59a078807715786a13876d3455716a6b9cb2186b7a4887a5c31160fc877454958616c0".from_hex().unwrap(); let b1_hash = H256::from_str("f53f268d23a71e85c7d6d83a9504298712b84c1a2ba220441c86eeda0bf0b6e3").unwrap(); let temp = RandomTempPath::new(); let bc = BlockChain::new(Config::default(), &genesis, temp.as_path()); bc.insert_block(&b1, vec![]); let transactions = bc.transactions(&b1_hash).unwrap(); assert_eq!(transactions.len(), 7); for t in transactions { assert_eq!(bc.transaction(&bc.transaction_address(&t.hash()).unwrap()).unwrap(), t); } } #[test] fn test_bloom_filter_simple() { // TODO: From here let bloom_b1 = H2048::from_str("00000020000000000000000000000000000000000000000002000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000040000000000000010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000008000400000000000000000000002000").unwrap(); let bloom_b2 = H2048::from_str("00000000000000000000000000000000000000000000020000001000000000000000000000000000000000000000000000000000000000000000000000000000100000000000000000008000000000000000000000000000000000040000000000000000000000000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000000000000000008000000000000000000000000000000000000000000000000000000000000000000000000000000000000002000000000000000000040000000000000000000000000000000000000000000000000000000000000000000000000000000000000000").unwrap(); let bloom_ba = H2048::from_str("00000000000000000000000000000000000000000000020000000800000000000000000000000000000000000000000000000000000000000000000000000000100000000000000000008000000000000000000000000000000000040000000000000000000000000000000000000000000000000000000000000000000000800000000000000000000000000000000000000000000000000000000000008000000000000000000000000000000000000000000000000000000000000000000000000000000000000002000000000000000000040000000000000000000000000000000000000000000000000000000000000000000000000000000000000000").unwrap(); let mut canon_chain = ChainGenerator::default(); let mut finalizer = BlockFinalizer::default(); let genesis = canon_chain.generate(&mut finalizer).unwrap(); let mut fork = canon_chain.fork(1); let mut fork_finalizer = finalizer.fork(); let b1 = fork.with_bloom(bloom_b1.clone()).generate(&mut fork_finalizer).unwrap(); let b2 = fork.with_bloom(bloom_b2.clone()).generate(&mut fork_finalizer).unwrap(); let b3 = fork.with_bloom(bloom_ba.clone()).generate(&mut fork_finalizer).unwrap(); let b1a = canon_chain.with_bloom(bloom_ba.clone()).generate(&mut finalizer).unwrap(); let b2a = canon_chain.with_bloom(bloom_ba.clone()).generate(&mut finalizer).unwrap(); let temp = RandomTempPath::new(); let bc = BlockChain::new(Config::default(), &genesis, temp.as_path()); let blocks_b1 = bc.blocks_with_bloom(&bloom_b1, 0, 5); let blocks_b2 = bc.blocks_with_bloom(&bloom_b2, 0, 5); assert_eq!(blocks_b1, vec![]); assert_eq!(blocks_b2, vec![]); bc.insert_block(&b1, vec![]); let blocks_b1 = bc.blocks_with_bloom(&bloom_b1, 0, 5); let blocks_b2 = bc.blocks_with_bloom(&bloom_b2, 0, 5); assert_eq!(blocks_b1, vec![1]); assert_eq!(blocks_b2, vec![]); bc.insert_block(&b2, vec![]); let blocks_b1 = bc.blocks_with_bloom(&bloom_b1, 0, 5); let blocks_b2 = bc.blocks_with_bloom(&bloom_b2, 0, 5); assert_eq!(blocks_b1, vec![1]); assert_eq!(blocks_b2, vec![2]); // hasn't been forked yet bc.insert_block(&b1a, vec![]); let blocks_b1 = bc.blocks_with_bloom(&bloom_b1, 0, 5); let blocks_b2 = bc.blocks_with_bloom(&bloom_b2, 0, 5); let blocks_ba = bc.blocks_with_bloom(&bloom_ba, 0, 5); assert_eq!(blocks_b1, vec![1]); assert_eq!(blocks_b2, vec![2]); assert_eq!(blocks_ba, vec![]); // fork has happend bc.insert_block(&b2a, vec![]); let blocks_b1 = bc.blocks_with_bloom(&bloom_b1, 0, 5); let blocks_b2 = bc.blocks_with_bloom(&bloom_b2, 0, 5); let blocks_ba = bc.blocks_with_bloom(&bloom_ba, 0, 5); assert_eq!(blocks_b1, vec![]); assert_eq!(blocks_b2, vec![]); assert_eq!(blocks_ba, vec![1, 2]); // fork back bc.insert_block(&b3, vec![]); let blocks_b1 = bc.blocks_with_bloom(&bloom_b1, 0, 5); let blocks_b2 = bc.blocks_with_bloom(&bloom_b2, 0, 5); let blocks_ba = bc.blocks_with_bloom(&bloom_ba, 0, 5); assert_eq!(blocks_b1, vec![1]); assert_eq!(blocks_b2, vec![2]); assert_eq!(blocks_ba, vec![3]); } }