// Copyright 2017-2018 Parity Technologies (UK) Ltd. // This file is part of Substrate. // Substrate is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Substrate is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Substrate. If not, see . //! Substrate Client use std::{marker::PhantomData, collections::{HashSet, BTreeMap}, sync::Arc, panic::UnwindSafe}; use crate::error::Error; use futures::sync::mpsc; use parking_lot::{Mutex, RwLock}; use primitives::NativeOrEncoded; use runtime_primitives::{ Justification, generic::{BlockId, SignedBlock}, }; use consensus::{ Error as ConsensusError, ErrorKind as ConsensusErrorKind, ImportBlock, ImportResult, BlockOrigin, ForkChoiceStrategy }; use runtime_primitives::traits::{ Block as BlockT, Header as HeaderT, Zero, As, NumberFor, CurrentHeight, BlockNumberToHash, ApiRef, ProvideRuntimeApi, Digest, DigestItem, AuthorityIdFor }; use runtime_primitives::BuildStorage; use crate::runtime_api::{CallRuntimeAt, ConstructRuntimeApi}; use primitives::{Blake2Hasher, H256, ChangesTrieConfiguration, convert_hash, NeverNativeValue}; use primitives::storage::{StorageKey, StorageData}; use primitives::storage::well_known_keys; use codec::{Encode, Decode}; use state_machine::{ DBValue, Backend as StateBackend, CodeExecutor, ChangesTrieAnchorBlockId, ExecutionStrategy, ExecutionManager, prove_read, ChangesTrieRootsStorage, ChangesTrieStorage, key_changes, key_changes_proof, OverlayedChanges }; use crate::backend::{self, BlockImportOperation, PrunableStateChangesTrieStorage}; use crate::blockchain::{self, Info as ChainInfo, Backend as ChainBackend, HeaderBackend as ChainHeaderBackend}; use crate::call_executor::{CallExecutor, LocalCallExecutor}; use executor::{RuntimeVersion, RuntimeInfo}; use crate::notifications::{StorageNotifications, StorageEventStream}; use crate::light::{call_executor::prove_execution, fetcher::ChangesProof}; use crate::cht; use crate::error; use crate::in_mem; use crate::block_builder::{self, api::BlockBuilder as BlockBuilderAPI}; use crate::genesis; use consensus; use substrate_telemetry::telemetry; use slog::slog_info; use log::{info, trace, warn}; use error_chain::bail; /// Type that implements `futures::Stream` of block import events. pub type ImportNotifications = mpsc::UnboundedReceiver>; /// A stream of block finality notifications. pub type FinalityNotifications = mpsc::UnboundedReceiver>; /// Substrate Client pub struct Client where Block: BlockT { backend: Arc, executor: E, storage_notifications: Mutex>, import_notification_sinks: Mutex>>>, finality_notification_sinks: Mutex>>>, import_lock: Mutex<()>, importing_block: RwLock>, // holds the block hash currently being imported. TODO: replace this with block queue block_execution_strategy: ExecutionStrategy, api_execution_strategy: ExecutionStrategy, _phantom: PhantomData, } /// A source of blockchain events. pub trait BlockchainEvents { /// Get block import event stream. Not guaranteed to be fired for every /// imported block. fn import_notification_stream(&self) -> ImportNotifications; /// Get a stream of finality notifications. Not guaranteed to be fired for every /// finalized block. fn finality_notification_stream(&self) -> FinalityNotifications; /// Get storage changes event stream. /// /// Passing `None` as `filter_keys` subscribes to all storage changes. fn storage_changes_notification_stream(&self, filter_keys: Option<&[StorageKey]>) -> error::Result>; } /// Chain head information. pub trait ChainHead { /// Get best block header. fn best_block_header(&self) -> Result<::Header, error::Error>; /// Get all leaves of the chain: block hashes that have no children currently. /// Leaves that can never be finalized will not be returned. fn leaves(&self) -> Result::Hash>, error::Error>; } /// Fetch block body by ID. pub trait BlockBody { /// Get block body by ID. Returns `None` if the body is not stored. fn block_body(&self, id: &BlockId) -> error::Result::Extrinsic>>>; } /// Client info // TODO: split queue info from chain info and amalgamate into single struct. #[derive(Debug)] pub struct ClientInfo { /// Best block hash. pub chain: ChainInfo, /// Best block number in the queue. pub best_queued_number: Option<<::Header as HeaderT>::Number>, /// Best queued block hash. pub best_queued_hash: Option, } /// Block status. #[derive(Debug, PartialEq, Eq)] pub enum BlockStatus { /// Added to the import queue. Queued, /// Already in the blockchain. InChain, /// Block or parent is known to be bad. KnownBad, /// Not in the queue or the blockchain. Unknown, } /// Summary of an imported block #[derive(Clone, Debug)] pub struct BlockImportNotification { /// Imported block header hash. pub hash: Block::Hash, /// Imported block origin. pub origin: BlockOrigin, /// Imported block header. pub header: Block::Header, /// Is this the new best block. pub is_new_best: bool, } /// Summary of a finalized block. #[derive(Clone, Debug)] pub struct FinalityNotification { /// Imported block header hash. pub hash: Block::Hash, /// Imported block header. pub header: Block::Header, } // used in importing a block, where additional changes are made after the runtime // executed. enum PrePostHeader { // they are the same: no post-runtime digest items. Same(H), // different headers (pre, post). Different(H, H), } impl PrePostHeader { // get a reference to the "pre-header" -- the header as it should be just after the runtime. fn pre(&self) -> &H { match *self { PrePostHeader::Same(ref h) => h, PrePostHeader::Different(ref h, _) => h, } } // get a reference to the "post-header" -- the header as it should be after all changes are applied. fn post(&self) -> &H { match *self { PrePostHeader::Same(ref h) => h, PrePostHeader::Different(_, ref h) => h, } } // convert to the "post-header" -- the header as it should be after all changes are applied. fn into_post(self) -> H { match self { PrePostHeader::Same(h) => h, PrePostHeader::Different(_, h) => h, } } } /// Create an instance of in-memory client. pub fn new_in_mem( executor: E, genesis_storage: S, ) -> error::Result, LocalCallExecutor, E>, Block, RA>> where E: CodeExecutor + RuntimeInfo, S: BuildStorage, Block: BlockT, { new_with_backend(Arc::new(in_mem::Backend::new()), executor, genesis_storage) } /// Create a client with the explicitely provided backend. /// This is useful for testing backend implementations. pub fn new_with_backend( backend: Arc, executor: E, build_genesis_storage: S, ) -> error::Result, Block, RA>> where E: CodeExecutor + RuntimeInfo, S: BuildStorage, Block: BlockT, B: backend::LocalBackend { let call_executor = LocalCallExecutor::new(backend.clone(), executor); Client::new(backend, call_executor, build_genesis_storage, ExecutionStrategy::NativeWhenPossible, ExecutionStrategy::NativeWhenPossible) } impl Client where B: backend::Backend, E: CallExecutor, Block: BlockT, { /// Creates new Substrate Client with given blockchain and code executor. pub fn new( backend: Arc, executor: E, build_genesis_storage: S, block_execution_strategy: ExecutionStrategy, api_execution_strategy: ExecutionStrategy, ) -> error::Result { if backend.blockchain().header(BlockId::Number(Zero::zero()))?.is_none() { let (genesis_storage, children_genesis_storage) = build_genesis_storage.build_storage()?; let mut op = backend.begin_operation(BlockId::Hash(Default::default()))?; let state_root = op.reset_storage(genesis_storage, children_genesis_storage)?; let genesis_block = genesis::construct_genesis_block::(state_root.into()); info!("Initialising Genesis block/state (state: {}, header-hash: {})", genesis_block.header().state_root(), genesis_block.header().hash()); op.set_block_data( genesis_block.deconstruct().0, Some(vec![]), None, crate::backend::NewBlockState::Final )?; backend.commit_operation(op)?; } Ok(Client { backend, executor, storage_notifications: Default::default(), import_notification_sinks: Default::default(), finality_notification_sinks: Default::default(), import_lock: Default::default(), importing_block: Default::default(), block_execution_strategy, api_execution_strategy, _phantom: Default::default(), }) } /// Get a reference to the state at a given block. pub fn state_at(&self, block: &BlockId) -> error::Result { self.backend.state_at(*block) } /// Expose backend reference. To be used in tests only pub fn backend(&self) -> &Arc { &self.backend } /// Return storage entry keys in state in a block of given hash with given prefix. pub fn storage_keys(&self, id: &BlockId, key_prefix: &StorageKey) -> error::Result> { let keys = self.state_at(id)?.keys(&key_prefix.0).into_iter().map(StorageKey).collect(); Ok(keys) } /// Return single storage entry of contract under given address in state in a block of given hash. pub fn storage(&self, id: &BlockId, key: &StorageKey) -> error::Result> { Ok(self.state_at(id)? .storage(&key.0).map_err(|e| error::Error::from_state(Box::new(e)))? .map(StorageData)) } /// Get the code at a given block. pub fn code_at(&self, id: &BlockId) -> error::Result> { Ok(self.storage(id, &StorageKey(well_known_keys::CODE.to_vec()))? .expect("None is returned if there's no value stored for the given key; ':code' key is always defined; qed").0) } /// Get the set of authorities at a given block. pub fn authorities_at(&self, id: &BlockId) -> error::Result>> { match self.backend.blockchain().cache().and_then(|cache| cache.authorities_at(*id)) { Some(cached_value) => Ok(cached_value), None => self.executor.call(id, "Core_authorities", &[]) .and_then(|r| Vec::>::decode(&mut &r[..]) .ok_or_else(|| error::ErrorKind::InvalidAuthoritiesSet.into())) } } /// Get the RuntimeVersion at a given block. pub fn runtime_version_at(&self, id: &BlockId) -> error::Result { // TODO: Post Poc-2 return an error if version is missing self.executor.runtime_version(id) } /// Get call executor reference. pub fn executor(&self) -> &E { &self.executor } /// Reads storage value at a given block + key, returning read proof. pub fn read_proof(&self, id: &BlockId, key: &[u8]) -> error::Result>> { self.state_at(id) .and_then(|state| prove_read(state, key) .map(|(_, proof)| proof) .map_err(Into::into)) } /// Execute a call to a contract on top of state in a block of given hash /// AND returning execution proof. /// /// No changes are made. pub fn execution_proof(&self, id: &BlockId, method: &str, call_data: &[u8]) -> error::Result<(Vec, Vec>)> { let state = self.state_at(id)?; let header = self.prepare_environment_block(id)?; prove_execution(state, header, &self.executor, method, call_data) } /// Reads given header and generates CHT-based header proof. pub fn header_proof(&self, id: &BlockId) -> error::Result<(Block::Header, Vec>)> { self.header_proof_with_cht_size(id, cht::SIZE) } /// Get block hash by number. pub fn block_hash(&self, block_number: <::Header as HeaderT>::Number) -> error::Result> { self.backend.blockchain().hash(block_number) } /// Reads given header and generates CHT-based header proof for CHT of given size. pub fn header_proof_with_cht_size(&self, id: &BlockId, cht_size: u64) -> error::Result<(Block::Header, Vec>)> { let proof_error = || error::ErrorKind::Backend(format!("Failed to generate header proof for {:?}", id)); let header = self.backend.blockchain().expect_header(*id)?; let block_num = *header.number(); let cht_num = cht::block_to_cht_number(cht_size, block_num).ok_or_else(proof_error)?; let cht_start = cht::start_number(cht_size, cht_num); let headers = (cht_start.as_()..).map(|num| self.block_hash(As::sa(num))); let proof = cht::build_proof::(cht_size, cht_num, ::std::iter::once(block_num), headers)?; Ok((header, proof)) } /// Get longest range within [first; last] that is possible to use in `key_changes` /// and `key_changes_proof` calls. /// Range could be shortened from the beginning if some changes tries have been pruned. /// Returns Ok(None) if changes trues are not supported. pub fn max_key_changes_range( &self, first: NumberFor, last: BlockId, ) -> error::Result, BlockId)>> { let (config, storage) = match self.require_changes_trie().ok() { Some((config, storage)) => (config, storage), None => return Ok(None), }; let first = first.as_(); let last_num = self.backend.blockchain().expect_block_number_from_id(&last)?.as_(); if first > last_num { return Err(error::ErrorKind::ChangesTrieAccessFailed("Invalid changes trie range".into()).into()); } let finalized_number = self.backend.blockchain().info()?.finalized_number; let oldest = storage.oldest_changes_trie_block(&config, finalized_number.as_()); let first = As::sa(::std::cmp::max(first, oldest)); Ok(Some((first, last))) } /// Get pairs of (block, extrinsic) where key has been changed at given blocks range. /// Works only for runtimes that are supporting changes tries. pub fn key_changes( &self, first: NumberFor, last: BlockId, key: &StorageKey ) -> error::Result, u32)>> { let (config, storage) = self.require_changes_trie()?; let last_number = self.backend.blockchain().expect_block_number_from_id(&last)?.as_(); let last_hash = self.backend.blockchain().expect_block_hash_from_id(&last)?; key_changes::<_, Blake2Hasher>( &config, &*storage, first.as_(), &ChangesTrieAnchorBlockId { hash: convert_hash(&last_hash), number: last_number, }, self.backend.blockchain().info()?.best_number.as_(), &key.0) .and_then(|r| r.map(|r| r.map(|(block, tx)| (As::sa(block), tx))).collect::>()) .map_err(|err| error::ErrorKind::ChangesTrieAccessFailed(err).into()) } /// Get proof for computation of (block, extrinsic) pairs where key has been changed at given blocks range. /// `min` is the hash of the first block, which changes trie root is known to the requester - when we're using /// changes tries from ascendants of this block, we should provide proofs for changes tries roots /// `max` is the hash of the last block known to the requester - we can't use changes tries from descendants /// of this block. /// Works only for runtimes that are supporting changes tries. pub fn key_changes_proof( &self, first: Block::Hash, last: Block::Hash, min: Block::Hash, max: Block::Hash, key: &StorageKey ) -> error::Result> { self.key_changes_proof_with_cht_size( first, last, min, max, key, cht::SIZE, ) } /// Does the same work as `key_changes_proof`, but assumes that CHTs are of passed size. pub fn key_changes_proof_with_cht_size( &self, first: Block::Hash, last: Block::Hash, min: Block::Hash, max: Block::Hash, key: &StorageKey, cht_size: u64, ) -> error::Result> { struct AccessedRootsRecorder<'a, Block: BlockT> { storage: &'a ChangesTrieStorage, min: u64, required_roots_proofs: Mutex, H256>>, }; impl<'a, Block: BlockT> ChangesTrieRootsStorage for AccessedRootsRecorder<'a, Block> { fn root(&self, anchor: &ChangesTrieAnchorBlockId, block: u64) -> Result, String> { let root = self.storage.root(anchor, block)?; if block < self.min { if let Some(ref root) = root { self.required_roots_proofs.lock().insert( As::sa(block), root.clone() ); } } Ok(root) } } impl<'a, Block: BlockT> ChangesTrieStorage for AccessedRootsRecorder<'a, Block> { fn get(&self, key: &H256) -> Result, String> { self.storage.get(key) } } let (config, storage) = self.require_changes_trie()?; let min_number = self.backend.blockchain().expect_block_number_from_id(&BlockId::Hash(min))?; let recording_storage = AccessedRootsRecorder:: { storage, min: min_number.as_(), required_roots_proofs: Mutex::new(BTreeMap::new()), }; let max_number = ::std::cmp::min( self.backend.blockchain().info()?.best_number, self.backend.blockchain().expect_block_number_from_id(&BlockId::Hash(max))?, ); // fetch key changes proof let first_number = self.backend.blockchain().expect_block_number_from_id(&BlockId::Hash(first))?.as_(); let last_number = self.backend.blockchain().expect_block_number_from_id(&BlockId::Hash(last))?.as_(); let key_changes_proof = key_changes_proof::<_, Blake2Hasher>( &config, &recording_storage, first_number, &ChangesTrieAnchorBlockId { hash: convert_hash(&last), number: last_number, }, max_number.as_(), &key.0 ) .map_err(|err| error::Error::from(error::ErrorKind::ChangesTrieAccessFailed(err)))?; // now gather proofs for all changes tries roots that were touched during key_changes_proof // execution AND are unknown (i.e. replaced with CHT) to the requester let roots = recording_storage.required_roots_proofs.into_inner(); let roots_proof = self.changes_trie_roots_proof(cht_size, roots.keys().cloned())?; Ok(ChangesProof { max_block: max_number, proof: key_changes_proof, roots: roots.into_iter().map(|(n, h)| (n, convert_hash(&h))).collect(), roots_proof, }) } /// Generate CHT-based proof for roots of changes tries at given blocks. fn changes_trie_roots_proof>>( &self, cht_size: u64, blocks: I ) -> error::Result>> { // most probably we have touched several changes tries that are parts of the single CHT // => GroupBy changes tries by CHT number and then gather proof for the whole group at once let mut proof = HashSet::new(); cht::for_each_cht_group::(cht_size, blocks, |_, cht_num, cht_blocks| { let cht_proof = self.changes_trie_roots_proof_at_cht(cht_size, cht_num, cht_blocks)?; proof.extend(cht_proof); Ok(()) }, ())?; Ok(proof.into_iter().collect()) } /// Generates CHT-based proof for roots of changes tries at given blocks (that are part of single CHT). fn changes_trie_roots_proof_at_cht( &self, cht_size: u64, cht_num: NumberFor, blocks: Vec> ) -> error::Result>> { let cht_start = cht::start_number(cht_size, cht_num); let roots = (cht_start.as_()..).map(|num| self.header(&BlockId::Number(As::sa(num))) .map(|block| block.and_then(|block| block.digest().log(DigestItem::as_changes_trie_root).cloned()))); let proof = cht::build_proof::(cht_size, cht_num, blocks, roots)?; Ok(proof) } /// Returns changes trie configuration and storage or an error if it is not supported. fn require_changes_trie(&self) -> error::Result<(ChangesTrieConfiguration, &B::ChangesTrieStorage)> { let config = self.changes_trie_config()?; let storage = self.backend.changes_trie_storage(); match (config, storage) { (Some(config), Some(storage)) => Ok((config, storage)), _ => Err(error::ErrorKind::ChangesTriesNotSupported.into()), } } /// Create a new block, built on the head of the chain. pub fn new_block( &self ) -> error::Result> where E: Clone + Send + Sync, RA: Send + Sync, Self: ProvideRuntimeApi, ::Api: BlockBuilderAPI { block_builder::BlockBuilder::new(self) } /// Create a new block, built on top of `parent`. pub fn new_block_at( &self, parent: &BlockId ) -> error::Result> where E: Clone + Send + Sync, RA: Send + Sync, Self: ProvideRuntimeApi, ::Api: BlockBuilderAPI { block_builder::BlockBuilder::at_block(parent, &self) } fn execute_and_import_block( &self, origin: BlockOrigin, hash: Block::Hash, import_headers: PrePostHeader, justification: Option, body: Option>, authorities: Option>>, finalized: bool, aux: Vec<(Vec, Option>)>, fork_choice: ForkChoiceStrategy, ) -> error::Result where E: CallExecutor + Send + Sync + Clone, { let parent_hash = import_headers.post().parent_hash().clone(); match self.backend.blockchain().status(BlockId::Hash(hash))? { blockchain::BlockStatus::InChain => return Ok(ImportResult::AlreadyInChain), blockchain::BlockStatus::Unknown => {}, } let (last_best, last_best_number) = { let info = self.backend.blockchain().info()?; (info.best_hash, info.best_number) }; // this is a fairly arbitrary choice of where to draw the line on making notifications, // but the general goal is to only make notifications when we are already fully synced // and get a new chain head. let make_notifications = match origin { BlockOrigin::NetworkBroadcast | BlockOrigin::Own | BlockOrigin::ConsensusBroadcast => true, BlockOrigin::Genesis | BlockOrigin::NetworkInitialSync | BlockOrigin::File => false, }; // ensure parent block is finalized to maintain invariant that // finality is called sequentially. if finalized { self.apply_finality(parent_hash, None, last_best, make_notifications)?; } let mut transaction = self.backend.begin_operation(BlockId::Hash(parent_hash))?; let (storage_update, changes_update, storage_changes) = match transaction.state()? { Some(transaction_state) => { let mut overlay = Default::default(); let r = self.executor.call_at_state::<_, _, NeverNativeValue, fn() -> NeverNativeValue>( transaction_state, &mut overlay, "Core_execute_block", &::new(import_headers.pre().clone(), body.clone().unwrap_or_default()).encode(), match (origin, self.block_execution_strategy) { (BlockOrigin::NetworkInitialSync, _) | (_, ExecutionStrategy::NativeWhenPossible) => ExecutionManager::NativeWhenPossible, (_, ExecutionStrategy::AlwaysWasm) => ExecutionManager::AlwaysWasm, _ => ExecutionManager::Both(|wasm_result, native_result| { let header = import_headers.post(); warn!("Consensus error between wasm and native block execution at block {}", hash); warn!(" Header {:?}", header); warn!(" Native result {:?}", native_result); warn!(" Wasm result {:?}", wasm_result); telemetry!("block.execute.consensus_failure"; "hash" => ?hash, "origin" => ?origin, "header" => ?header ); wasm_result }), }, None, ); let (_, storage_update, changes_update) = r?; overlay.commit_prospective(); (Some(storage_update), Some(changes_update), Some(overlay.into_committed().collect())) }, None => (None, None, None) }; // TODO: non longest-chain rule. let is_new_best = finalized || match fork_choice { ForkChoiceStrategy::LongestChain => import_headers.post().number() > &last_best_number, ForkChoiceStrategy::Custom(v) => v, }; let leaf_state = if finalized { crate::backend::NewBlockState::Final } else if is_new_best { crate::backend::NewBlockState::Best } else { crate::backend::NewBlockState::Normal }; trace!("Imported {}, (#{}), best={}, origin={:?}", hash, import_headers.post().number(), is_new_best, origin); transaction.set_block_data( import_headers.post().clone(), body, justification, leaf_state, )?; if let Some(authorities) = authorities { transaction.update_authorities(authorities); } if let Some(storage_update) = storage_update { transaction.update_db_storage(storage_update)?; } if let Some(storage_changes) = storage_changes.clone() { transaction.update_storage(storage_changes)?; } if let Some(Some(changes_update)) = changes_update { transaction.update_changes_trie(changes_update)?; } transaction.set_aux(aux)?; self.backend.commit_operation(transaction)?; if make_notifications { if let Some(storage_changes) = storage_changes { // TODO [ToDr] How to handle re-orgs? Should we re-emit all storage changes? self.storage_notifications.lock() .trigger(&hash, storage_changes.into_iter()); } if finalized { let notification = FinalityNotification:: { hash, header: import_headers.post().clone(), }; self.finality_notification_sinks.lock() .retain(|sink| sink.unbounded_send(notification.clone()).is_ok()); } let notification = BlockImportNotification:: { hash, origin, header: import_headers.into_post(), is_new_best, }; self.import_notification_sinks.lock() .retain(|sink| sink.unbounded_send(notification.clone()).is_ok()); } Ok(ImportResult::Queued) } /// Finalizes all blocks up to given. If a justification is provided it is /// stored with the given finalized block (any other finalized blocks are /// left unjustified). fn apply_finality( &self, block: Block::Hash, justification: Option, best_block: Block::Hash, notify: bool, ) -> error::Result<()> { // find tree route from last finalized to given block. let last_finalized = self.backend.blockchain().last_finalized()?; if block == last_finalized { warn!("Possible safety violation: attempted to re-finalize last finalized block {:?} ", last_finalized); return Ok(()); } let route_from_finalized = crate::blockchain::tree_route( self.backend.blockchain(), BlockId::Hash(last_finalized), BlockId::Hash(block), )?; if let Some(retracted) = route_from_finalized.retracted().get(0) { warn!("Safety violation: attempted to revert finalized block {:?} which is not in the \ same chain as last finalized {:?}", retracted, last_finalized); bail!(error::ErrorKind::NotInFinalizedChain); } let route_from_best = crate::blockchain::tree_route( self.backend.blockchain(), BlockId::Hash(best_block), BlockId::Hash(block), )?; // if the block is not a direct ancestor of the current best chain, // then some other block is the common ancestor. if route_from_best.common_block().hash != block { // TODO: reorganize best block to be the best chain containing // `block`. } let enacted = route_from_finalized.enacted(); assert!(enacted.len() > 0); for finalize_new in &enacted[..enacted.len() - 1] { self.backend.finalize_block(BlockId::Hash(finalize_new.hash), None)?; } assert_eq!(enacted.last().map(|e| e.hash), Some(block)); self.backend.finalize_block(BlockId::Hash(block), justification)?; if notify { // sometimes when syncing, tons of blocks can be finalized at once. // we'll send notifications spuriously in that case. const MAX_TO_NOTIFY: usize = 256; let enacted = route_from_finalized.enacted(); let start = enacted.len() - ::std::cmp::min(enacted.len(), MAX_TO_NOTIFY); let mut sinks = self.finality_notification_sinks.lock(); for finalized in &enacted[start..] { let header = self.header(&BlockId::Hash(finalized.hash))? .expect("header already known to exist in DB because it is indicated in the tree route; qed"); let notification = FinalityNotification { header, hash: finalized.hash, }; sinks.retain(|sink| sink.unbounded_send(notification.clone()).is_ok()); } } Ok(()) } /// Finalize a block. This will implicitly finalize all blocks up to it and /// fire finality notifications. /// /// Pass a flag to indicate whether finality notifications should be propagated. /// This is usually tied to some synchronization state, where we don't send notifications /// while performing major synchronization work. pub fn finalize_block(&self, id: BlockId, justification: Option, notify: bool) -> error::Result<()> { let last_best = self.backend.blockchain().info()?.best_hash; let to_finalize_hash = self.backend.blockchain().expect_block_hash_from_id(&id)?; self.apply_finality(to_finalize_hash, justification, last_best, notify) } /// Attempts to revert the chain by `n` blocks. Returns the number of blocks that were /// successfully reverted. pub fn revert(&self, n: NumberFor) -> error::Result> { Ok(self.backend.revert(n)?) } /// Get blockchain info. pub fn info(&self) -> error::Result> { let info = self.backend.blockchain().info().map_err(|e| error::Error::from_blockchain(Box::new(e)))?; Ok(ClientInfo { chain: info, best_queued_hash: None, best_queued_number: None, }) } /// Get block status. pub fn block_status(&self, id: &BlockId) -> error::Result { // TODO: more efficient implementation if let BlockId::Hash(ref h) = id { if self.importing_block.read().as_ref().map_or(false, |importing| h == importing) { return Ok(BlockStatus::Queued); } } match self.backend.blockchain().header(*id).map_err(|e| error::Error::from_blockchain(Box::new(e)))?.is_some() { true => Ok(BlockStatus::InChain), false => Ok(BlockStatus::Unknown), } } /// Get block header by id. pub fn header(&self, id: &BlockId) -> error::Result::Header>> { self.backend.blockchain().header(*id) } /// Get block body by id. pub fn body(&self, id: &BlockId) -> error::Result::Extrinsic>>> { self.backend.blockchain().body(*id) } /// Get block justification set by id. pub fn justification(&self, id: &BlockId) -> error::Result> { self.backend.blockchain().justification(*id) } /// Get full block by id. pub fn block(&self, id: &BlockId) -> error::Result>> { Ok(match (self.header(id)?, self.body(id)?, self.justification(id)?) { (Some(header), Some(extrinsics), justification) => Some(SignedBlock { block: Block::new(header, extrinsics), justification }), _ => None, }) } /// Get best block header. pub fn best_block_header(&self) -> error::Result<::Header> { let info = self.backend.blockchain().info().map_err(|e| error::Error::from_blockchain(Box::new(e)))?; Ok(self.header(&BlockId::Hash(info.best_hash))?.expect("Best block header must always exist")) } /// Get the most recent block hash of the best (longest) chains /// that contain block with the given `target_hash`. /// If `maybe_max_block_number` is `Some(max_block_number)` /// the search is limited to block `numbers <= max_block_number`. /// in other words as if there were no blocks greater `max_block_number`. /// TODO [snd] possibly implement this on blockchain::Backend and just redirect here /// Returns `Ok(None)` if `target_hash` is not found in search space. /// TODO [snd] write down time complexity pub fn best_containing(&self, target_hash: Block::Hash, maybe_max_number: Option>) -> error::Result> { let target_header = { match self.backend.blockchain().header(BlockId::Hash(target_hash))? { Some(x) => x, // target not in blockchain None => { return Ok(None); }, } }; if let Some(max_number) = maybe_max_number { // target outside search range if target_header.number() > &max_number { return Ok(None); } } let (leaves, best_already_checked) = { // ensure no blocks are imported during this code block. // an import could trigger a reorg which could change the canonical chain. // we depend on the canonical chain staying the same during this code block. let _import_lock = self.import_lock.lock(); let info = self.backend.blockchain().info()?; let canon_hash = self.backend.blockchain().hash(*target_header.number())? .ok_or_else(|| error::Error::from(format!("failed to get hash for block number {}", target_header.number())))?; if canon_hash == target_hash { // if no block at the given max depth exists fallback to the best block if let Some(max_number) = maybe_max_number { if let Some(header) = self.backend.blockchain().hash(max_number)? { return Ok(Some(header)); } } return Ok(Some(info.best_hash)); } (self.backend.blockchain().leaves()?, info.best_hash) }; // for each chain. longest chain first. shortest last for leaf_hash in leaves { // ignore canonical chain which we already checked above if leaf_hash == best_already_checked { continue; } // start at the leaf let mut current_hash = leaf_hash; // if search is not restricted then the leaf is the best let mut best_hash = leaf_hash; // go backwards entering the search space // waiting until we are <= max_number if let Some(max_number) = maybe_max_number { loop { // TODO [snd] this should be a panic let current_header = self.backend.blockchain().header(BlockId::Hash(current_hash.clone()))? .ok_or_else(|| error::Error::from(format!("failed to get header for hash {}", current_hash)))?; if current_header.number() <= &max_number { best_hash = current_header.hash(); break; } current_hash = *current_header.parent_hash(); } } // go backwards through the chain (via parent links) loop { // until we find target if current_hash == target_hash { return Ok(Some(best_hash)); } // TODO [snd] this should be a panic let current_header = self.backend.blockchain().header(BlockId::Hash(current_hash.clone()))? .ok_or_else(|| error::Error::from(format!("failed to get header for hash {}", current_hash)))?; // stop search in this chain once we go below the target's block number if current_header.number() < target_header.number() { break; } current_hash = *current_header.parent_hash(); } } unreachable!("this is a bug. `target_hash` is in blockchain but wasn't found following all leaves backwards"); } fn changes_trie_config(&self) -> Result, Error> { Ok(self.backend.state_at(BlockId::Number(self.backend.blockchain().info()?.best_number))? .storage(well_known_keys::CHANGES_TRIE_CONFIG) .map_err(|e| error::Error::from_state(Box::new(e)))? .and_then(|c| Decode::decode(&mut &*c))) } /// Prepare in-memory header that is used in execution environment. fn prepare_environment_block(&self, parent: &BlockId) -> error::Result { Ok(<::Header as HeaderT>::new( self.backend.blockchain().expect_block_number_from_id(parent)? + As::sa(1), Default::default(), Default::default(), self.backend.blockchain().expect_block_hash_from_id(&parent)?, Default::default(), )) } } impl ChainHeaderBackend for Client where B: backend::Backend, E: CallExecutor + Send + Sync, Block: BlockT, RA: Send + Sync { fn header(&self, id: BlockId) -> error::Result> { self.backend.blockchain().header(id) } fn info(&self) -> error::Result> { self.backend.blockchain().info() } fn status(&self, id: BlockId) -> error::Result { self.backend.blockchain().status(id) } fn number(&self, hash: Block::Hash) -> error::Result::Header as HeaderT>::Number>> { self.backend.blockchain().number(hash) } fn hash(&self, number: NumberFor) -> error::Result> { self.backend.blockchain().hash(number) } } impl ProvideRuntimeApi for Client where B: backend::Backend, E: CallExecutor + Clone + Send + Sync, Block: BlockT, RA: ConstructRuntimeApi { type Api = >::RuntimeApi; fn runtime_api<'a>(&'a self) -> ApiRef<'a, Self::Api> { RA::construct_runtime_api(self) } } impl CallRuntimeAt for Client where B: backend::Backend, E: CallExecutor + Clone + Send + Sync, Block: BlockT { fn call_api_at R + UnwindSafe>( &self, at: &BlockId, function: &'static str, args: Vec, changes: &mut OverlayedChanges, initialised_block: &mut Option>, native_call: Option, ) -> error::Result> { let execution_manager = match self.api_execution_strategy { ExecutionStrategy::NativeWhenPossible => ExecutionManager::NativeWhenPossible, ExecutionStrategy::AlwaysWasm => ExecutionManager::AlwaysWasm, ExecutionStrategy::Both => ExecutionManager::Both(|wasm_result, native_result| { warn!("Consensus error between wasm and native runtime execution at block {:?}", at); warn!(" Function {:?}", function); warn!(" Native result {:?}", native_result); warn!(" Wasm result {:?}", wasm_result); wasm_result }), }; self.executor.contextual_call( at, function, &args, changes, initialised_block, || self.prepare_environment_block(at), execution_manager, native_call, ) } fn runtime_version_at(&self, at: &BlockId) -> error::Result { self.runtime_version_at(at) } } impl consensus::BlockImport for Client where B: backend::Backend, E: CallExecutor + Clone + Send + Sync, Block: BlockT, { type Error = ConsensusError; /// Import a checked and validated block. If a justification is provided in /// `ImportBlock` then `finalized` *must* be true. fn import_block( &self, import_block: ImportBlock, new_authorities: Option>>, ) -> Result { use runtime_primitives::traits::Digest; let ImportBlock { origin, header, justification, post_digests, body, finalized, auxiliary, fork_choice, } = import_block; assert!(justification.is_some() && finalized || justification.is_none()); let parent_hash = header.parent_hash().clone(); match self.backend.blockchain().status(BlockId::Hash(parent_hash)) { Ok(blockchain::BlockStatus::InChain) => {}, Ok(blockchain::BlockStatus::Unknown) => return Ok(ImportResult::UnknownParent), Err(e) => return Err(ConsensusErrorKind::ClientImport(e.to_string()).into()), } let import_headers = if post_digests.is_empty() { PrePostHeader::Same(header) } else { let mut post_header = header.clone(); for item in post_digests { post_header.digest_mut().push(item); } PrePostHeader::Different(header, post_header) }; let hash = import_headers.post().hash(); let _import_lock = self.import_lock.lock(); let height: u64 = import_headers.post().number().as_(); *self.importing_block.write() = Some(hash); let result = self.execute_and_import_block( origin, hash, import_headers, justification, body, new_authorities, finalized, auxiliary, fork_choice, ); *self.importing_block.write() = None; telemetry!("block.import"; "height" => height, "best" => ?hash, "origin" => ?origin ); result.map_err(|e| ConsensusErrorKind::ClientImport(e.to_string()).into()) } /// Import a block justification and finalize the block. The justification /// isn't interpreted by the client and is assumed to have been validated /// previously. The block is finalized unconditionally. fn import_justification( &self, hash: Block::Hash, _number: NumberFor, justification: Justification, ) -> Result<(), Self::Error> { self.finalize_block(BlockId::Hash(hash), Some(justification), true) .map_err(|_| ConsensusErrorKind::InvalidJustification.into()) } } impl consensus::Authorities for Client where B: backend::Backend, E: CallExecutor + Clone, Block: BlockT, { type Error = Error; fn authorities(&self, at: &BlockId) -> Result>, Self::Error> { self.authorities_at(at).map_err(|e| e.into()) } } impl CurrentHeight for Client where B: backend::Backend, E: CallExecutor + Clone, Block: BlockT, { type BlockNumber = ::Number; fn current_height(&self) -> Self::BlockNumber { self.backend.blockchain().info().map(|i| i.best_number).unwrap_or_else(|_| Zero::zero()) } } impl BlockNumberToHash for Client where B: backend::Backend, E: CallExecutor + Clone, Block: BlockT, { type BlockNumber = ::Number; type Hash = Block::Hash; fn block_number_to_hash(&self, n: Self::BlockNumber) -> Option { self.block_hash(n).unwrap_or(None) } } impl BlockchainEvents for Client where E: CallExecutor, Block: BlockT, { /// Get block import event stream. fn import_notification_stream(&self) -> ImportNotifications { let (sink, stream) = mpsc::unbounded(); self.import_notification_sinks.lock().push(sink); stream } fn finality_notification_stream(&self) -> FinalityNotifications { let (sink, stream) = mpsc::unbounded(); self.finality_notification_sinks.lock().push(sink); stream } /// Get storage changes event stream. fn storage_changes_notification_stream(&self, filter_keys: Option<&[StorageKey]>) -> error::Result> { Ok(self.storage_notifications.lock().listen(filter_keys)) } } impl ChainHead for Client where B: backend::Backend, E: CallExecutor, Block: BlockT, { fn best_block_header(&self) -> error::Result<::Header> { Client::best_block_header(self) } fn leaves(&self) -> Result::Hash>, error::Error> { self.backend.blockchain().leaves() } } impl BlockBody for Client where B: backend::Backend, E: CallExecutor, Block: BlockT, { fn block_body(&self, id: &BlockId) -> error::Result::Extrinsic>>> { self.body(id) } } impl backend::AuxStore for Client where B: backend::Backend, E: CallExecutor, Block: BlockT, { /// Insert auxiliary data into key-value store. fn insert_aux< 'a, 'b: 'a, 'c: 'a, I: IntoIterator, D: IntoIterator, >(&self, insert: I, delete: D) -> error::Result<()> { crate::backend::AuxStore::insert_aux(&*self.backend, insert, delete) } /// Query auxiliary data from key-value store. fn get_aux(&self, key: &[u8]) -> error::Result>> { crate::backend::AuxStore::get_aux(&*self.backend, key) } } #[cfg(test)] pub(crate) mod tests { use std::collections::HashMap; use super::*; use keyring::Keyring; use primitives::twox_128; use runtime_primitives::traits::DigestItem as DigestItemT; use runtime_primitives::generic::DigestItem; use test_client::{self, TestClient}; use consensus::BlockOrigin; use test_client::client::{backend::Backend as TestBackend, runtime_api::ApiExt}; use test_client::BlockBuilderExt; use test_client::runtime::{self, Block, Transfer, RuntimeApi, TestAPI}; /// Returns tuple, consisting of: /// 1) test client pre-filled with blocks changing balances; /// 2) roots of changes tries for these blocks /// 3) test cases in form (begin, end, key, vec![(block, extrinsic)]) that are required to pass pub fn prepare_client_with_key_changes() -> ( test_client::client::Client, Vec, Vec<(u64, u64, Vec, Vec<(u64, u32)>)>, ) { // prepare block structure let blocks_transfers = vec![ vec![(Keyring::Alice, Keyring::Dave), (Keyring::Bob, Keyring::Dave)], vec![(Keyring::Charlie, Keyring::Eve)], vec![], vec![(Keyring::Alice, Keyring::Dave)], ]; // prepare client ang import blocks let mut local_roots = Vec::new(); let remote_client = test_client::new_with_changes_trie(); let mut nonces: HashMap<_, u64> = Default::default(); for (i, block_transfers) in blocks_transfers.into_iter().enumerate() { let mut builder = remote_client.new_block().unwrap(); for (from, to) in block_transfers { builder.push_transfer(Transfer { from: from.to_raw_public().into(), to: to.to_raw_public().into(), amount: 1, nonce: *nonces.entry(from).and_modify(|n| { *n = *n + 1 }).or_default(), }).unwrap(); } remote_client.import(BlockOrigin::Own, builder.bake().unwrap()).unwrap(); let header = remote_client.header(&BlockId::Number(i as u64 + 1)).unwrap().unwrap(); let trie_root = header.digest().log(DigestItem::as_changes_trie_root) .map(|root| H256::from_slice(root.as_ref())) .unwrap(); local_roots.push(trie_root); } // prepare test cases let alice = twox_128(&runtime::system::balance_of_key(Keyring::Alice.to_raw_public().into())).to_vec(); let bob = twox_128(&runtime::system::balance_of_key(Keyring::Bob.to_raw_public().into())).to_vec(); let charlie = twox_128(&runtime::system::balance_of_key(Keyring::Charlie.to_raw_public().into())).to_vec(); let dave = twox_128(&runtime::system::balance_of_key(Keyring::Dave.to_raw_public().into())).to_vec(); let eve = twox_128(&runtime::system::balance_of_key(Keyring::Eve.to_raw_public().into())).to_vec(); let ferdie = twox_128(&runtime::system::balance_of_key(Keyring::Ferdie.to_raw_public().into())).to_vec(); let test_cases = vec![ (1, 4, alice.clone(), vec![(4, 0), (1, 0)]), (1, 3, alice.clone(), vec![(1, 0)]), (2, 4, alice.clone(), vec![(4, 0)]), (2, 3, alice.clone(), vec![]), (1, 4, bob.clone(), vec![(1, 1)]), (1, 1, bob.clone(), vec![(1, 1)]), (2, 4, bob.clone(), vec![]), (1, 4, charlie.clone(), vec![(2, 0)]), (1, 4, dave.clone(), vec![(4, 0), (1, 1), (1, 0)]), (1, 1, dave.clone(), vec![(1, 1), (1, 0)]), (3, 4, dave.clone(), vec![(4, 0)]), (1, 4, eve.clone(), vec![(2, 0)]), (1, 1, eve.clone(), vec![]), (3, 4, eve.clone(), vec![]), (1, 4, ferdie.clone(), vec![]), ]; (remote_client, local_roots, test_cases) } #[test] fn client_initialises_from_genesis_ok() { let client = test_client::new(); assert_eq!( client.runtime_api().balance_of( &BlockId::Number(client.info().unwrap().chain.best_number), Keyring::Alice.to_raw_public().into() ).unwrap(), 1000 ); assert_eq!( client.runtime_api().balance_of( &BlockId::Number(client.info().unwrap().chain.best_number), Keyring::Ferdie.to_raw_public().into() ).unwrap(), 0 ); } #[test] fn runtime_api_has_test_api() { let client = test_client::new(); assert!( client.runtime_api().has_api::>( &BlockId::Number(client.info().unwrap().chain.best_number), ).unwrap() ); } #[test] fn authorities_call_works() { let client = test_client::new(); assert_eq!(client.info().unwrap().chain.best_number, 0); assert_eq!(client.authorities_at(&BlockId::Number(0)).unwrap(), vec![ Keyring::Alice.to_raw_public().into(), Keyring::Bob.to_raw_public().into(), Keyring::Charlie.to_raw_public().into() ]); } #[test] fn block_builder_works_with_no_transactions() { let client = test_client::new(); let builder = client.new_block().unwrap(); client.import(BlockOrigin::Own, builder.bake().unwrap()).unwrap(); assert_eq!(client.info().unwrap().chain.best_number, 1); } #[test] fn block_builder_works_with_transactions() { let client = test_client::new(); let mut builder = client.new_block().unwrap(); builder.push_transfer(Transfer { from: Keyring::Alice.to_raw_public().into(), to: Keyring::Ferdie.to_raw_public().into(), amount: 42, nonce: 0, }).unwrap(); client.import(BlockOrigin::Own, builder.bake().unwrap()).unwrap(); assert_eq!(client.info().unwrap().chain.best_number, 1); assert!(client.state_at(&BlockId::Number(1)).unwrap() != client.state_at(&BlockId::Number(0)).unwrap()); assert_eq!( client.runtime_api().balance_of( &BlockId::Number(client.info().unwrap().chain.best_number), Keyring::Alice.to_raw_public().into() ).unwrap(), 958 ); assert_eq!( client.runtime_api().balance_of( &BlockId::Number(client.info().unwrap().chain.best_number), Keyring::Ferdie.to_raw_public().into() ).unwrap(), 42 ); } #[test] fn client_uses_authorities_from_blockchain_cache() { let client = test_client::new(); test_client::client::in_mem::cache_authorities_at( client.backend().blockchain(), Default::default(), Some(vec![[1u8; 32].into()])); assert_eq!(client.authorities_at( &BlockId::Hash(Default::default())).unwrap(), vec![[1u8; 32].into()]); } #[test] fn block_builder_does_not_include_invalid() { let client = test_client::new(); let mut builder = client.new_block().unwrap(); builder.push_transfer(Transfer { from: Keyring::Alice.to_raw_public().into(), to: Keyring::Ferdie.to_raw_public().into(), amount: 42, nonce: 0, }).unwrap(); assert!(builder.push_transfer(Transfer { from: Keyring::Eve.to_raw_public().into(), to: Keyring::Alice.to_raw_public().into(), amount: 42, nonce: 0, }).is_err()); client.import(BlockOrigin::Own, builder.bake().unwrap()).unwrap(); assert_eq!(client.info().unwrap().chain.best_number, 1); assert!(client.state_at(&BlockId::Number(1)).unwrap() != client.state_at(&BlockId::Number(0)).unwrap()); assert_eq!(client.body(&BlockId::Number(1)).unwrap().unwrap().len(), 1) } #[test] fn best_containing_with_genesis_block() { // block tree: // G let client = test_client::new(); let genesis_hash = client.info().unwrap().chain.genesis_hash; assert_eq!(genesis_hash.clone(), client.best_containing(genesis_hash.clone(), None).unwrap().unwrap()); } #[test] fn best_containing_with_hash_not_found() { // block tree: // G let client = test_client::new(); let uninserted_block = client.new_block().unwrap().bake().unwrap(); assert_eq!(None, client.best_containing(uninserted_block.hash().clone(), None).unwrap()); } #[test] fn best_containing_with_single_chain_3_blocks() { // block tree: // G -> A1 -> A2 let client = test_client::new(); // G -> A1 let a1 = client.new_block().unwrap().bake().unwrap(); client.import(BlockOrigin::Own, a1.clone()).unwrap(); // A1 -> A2 let a2 = client.new_block().unwrap().bake().unwrap(); client.import(BlockOrigin::Own, a2.clone()).unwrap(); let genesis_hash = client.info().unwrap().chain.genesis_hash; assert_eq!(a2.hash(), client.best_containing(genesis_hash, None).unwrap().unwrap()); assert_eq!(a2.hash(), client.best_containing(a1.hash(), None).unwrap().unwrap()); assert_eq!(a2.hash(), client.best_containing(a2.hash(), None).unwrap().unwrap()); } #[test] fn best_containing_with_multiple_forks() { // NOTE: we use the version of the trait from `test_client` // because that is actually different than the version linked to // in the test facade crate. use test_client::blockchain::Backend as BlockchainBackendT; // block tree: // G -> A1 -> A2 -> A3 -> A4 -> A5 // A1 -> B2 -> B3 -> B4 // B2 -> C3 // A1 -> D2 let client = test_client::new(); // G -> A1 let a1 = client.new_block().unwrap().bake().unwrap(); client.import(BlockOrigin::Own, a1.clone()).unwrap(); // A1 -> A2 let a2 = client.new_block_at(&BlockId::Hash(a1.hash())).unwrap().bake().unwrap(); client.import(BlockOrigin::Own, a2.clone()).unwrap(); // A2 -> A3 let a3 = client.new_block_at(&BlockId::Hash(a2.hash())).unwrap().bake().unwrap(); client.import(BlockOrigin::Own, a3.clone()).unwrap(); // A3 -> A4 let a4 = client.new_block_at(&BlockId::Hash(a3.hash())).unwrap().bake().unwrap(); client.import(BlockOrigin::Own, a4.clone()).unwrap(); // A4 -> A5 let a5 = client.new_block_at(&BlockId::Hash(a4.hash())).unwrap().bake().unwrap(); client.import(BlockOrigin::Own, a5.clone()).unwrap(); // A1 -> B2 let mut builder = client.new_block_at(&BlockId::Hash(a1.hash())).unwrap(); // this push is required as otherwise B2 has the same hash as A2 and won't get imported builder.push_transfer(Transfer { from: Keyring::Alice.to_raw_public().into(), to: Keyring::Ferdie.to_raw_public().into(), amount: 41, nonce: 0, }).unwrap(); let b2 = builder.bake().unwrap(); client.import(BlockOrigin::Own, b2.clone()).unwrap(); // B2 -> B3 let b3 = client.new_block_at(&BlockId::Hash(b2.hash())).unwrap().bake().unwrap(); client.import(BlockOrigin::Own, b3.clone()).unwrap(); // B3 -> B4 let b4 = client.new_block_at(&BlockId::Hash(b3.hash())).unwrap().bake().unwrap(); client.import(BlockOrigin::Own, b4.clone()).unwrap(); // // B2 -> C3 let mut builder = client.new_block_at(&BlockId::Hash(b2.hash())).unwrap(); // this push is required as otherwise C3 has the same hash as B3 and won't get imported builder.push_transfer(Transfer { from: Keyring::Alice.to_raw_public().into(), to: Keyring::Ferdie.to_raw_public().into(), amount: 1, nonce: 1, }).unwrap(); let c3 = builder.bake().unwrap(); client.import(BlockOrigin::Own, c3.clone()).unwrap(); // A1 -> D2 let mut builder = client.new_block_at(&BlockId::Hash(a1.hash())).unwrap(); // this push is required as otherwise D2 has the same hash as B2 and won't get imported builder.push_transfer(Transfer { from: Keyring::Alice.to_raw_public().into(), to: Keyring::Ferdie.to_raw_public().into(), amount: 1, nonce: 0, }).unwrap(); let d2 = builder.bake().unwrap(); client.import(BlockOrigin::Own, d2.clone()).unwrap(); assert_eq!(client.info().unwrap().chain.best_hash, a5.hash()); let genesis_hash = client.info().unwrap().chain.genesis_hash; let leaves = BlockchainBackendT::leaves(client.backend().blockchain()).unwrap(); assert!(leaves.contains(&a5.hash())); assert!(leaves.contains(&b4.hash())); assert!(leaves.contains(&c3.hash())); assert!(leaves.contains(&d2.hash())); assert_eq!(leaves.len(), 4); // search without restriction assert_eq!(a5.hash(), client.best_containing(genesis_hash, None).unwrap().unwrap()); assert_eq!(a5.hash(), client.best_containing(a1.hash(), None).unwrap().unwrap()); assert_eq!(a5.hash(), client.best_containing(a2.hash(), None).unwrap().unwrap()); assert_eq!(a5.hash(), client.best_containing(a3.hash(), None).unwrap().unwrap()); assert_eq!(a5.hash(), client.best_containing(a4.hash(), None).unwrap().unwrap()); assert_eq!(a5.hash(), client.best_containing(a5.hash(), None).unwrap().unwrap()); assert_eq!(b4.hash(), client.best_containing(b2.hash(), None).unwrap().unwrap()); assert_eq!(b4.hash(), client.best_containing(b3.hash(), None).unwrap().unwrap()); assert_eq!(b4.hash(), client.best_containing(b4.hash(), None).unwrap().unwrap()); assert_eq!(c3.hash(), client.best_containing(c3.hash(), None).unwrap().unwrap()); assert_eq!(d2.hash(), client.best_containing(d2.hash(), None).unwrap().unwrap()); // search only blocks with number <= 5. equivalent to without restriction for this scenario assert_eq!(a5.hash(), client.best_containing(genesis_hash, Some(5)).unwrap().unwrap()); assert_eq!(a5.hash(), client.best_containing(a1.hash(), Some(5)).unwrap().unwrap()); assert_eq!(a5.hash(), client.best_containing(a2.hash(), Some(5)).unwrap().unwrap()); assert_eq!(a5.hash(), client.best_containing(a3.hash(), Some(5)).unwrap().unwrap()); assert_eq!(a5.hash(), client.best_containing(a4.hash(), Some(5)).unwrap().unwrap()); assert_eq!(a5.hash(), client.best_containing(a5.hash(), Some(5)).unwrap().unwrap()); assert_eq!(b4.hash(), client.best_containing(b2.hash(), Some(5)).unwrap().unwrap()); assert_eq!(b4.hash(), client.best_containing(b3.hash(), Some(5)).unwrap().unwrap()); assert_eq!(b4.hash(), client.best_containing(b4.hash(), Some(5)).unwrap().unwrap()); assert_eq!(c3.hash(), client.best_containing(c3.hash(), Some(5)).unwrap().unwrap()); assert_eq!(d2.hash(), client.best_containing(d2.hash(), Some(5)).unwrap().unwrap()); // search only blocks with number <= 4 assert_eq!(a4.hash(), client.best_containing(genesis_hash, Some(4)).unwrap().unwrap()); assert_eq!(a4.hash(), client.best_containing(a1.hash(), Some(4)).unwrap().unwrap()); assert_eq!(a4.hash(), client.best_containing(a2.hash(), Some(4)).unwrap().unwrap()); assert_eq!(a4.hash(), client.best_containing(a3.hash(), Some(4)).unwrap().unwrap()); assert_eq!(a4.hash(), client.best_containing(a4.hash(), Some(4)).unwrap().unwrap()); assert_eq!(None, client.best_containing(a5.hash(), Some(4)).unwrap()); assert_eq!(b4.hash(), client.best_containing(b2.hash(), Some(4)).unwrap().unwrap()); assert_eq!(b4.hash(), client.best_containing(b3.hash(), Some(4)).unwrap().unwrap()); assert_eq!(b4.hash(), client.best_containing(b4.hash(), Some(4)).unwrap().unwrap()); assert_eq!(c3.hash(), client.best_containing(c3.hash(), Some(4)).unwrap().unwrap()); assert_eq!(d2.hash(), client.best_containing(d2.hash(), Some(4)).unwrap().unwrap()); // search only blocks with number <= 3 assert_eq!(a3.hash(), client.best_containing(genesis_hash, Some(3)).unwrap().unwrap()); assert_eq!(a3.hash(), client.best_containing(a1.hash(), Some(3)).unwrap().unwrap()); assert_eq!(a3.hash(), client.best_containing(a2.hash(), Some(3)).unwrap().unwrap()); assert_eq!(a3.hash(), client.best_containing(a3.hash(), Some(3)).unwrap().unwrap()); assert_eq!(None, client.best_containing(a4.hash(), Some(3)).unwrap()); assert_eq!(None, client.best_containing(a5.hash(), Some(3)).unwrap()); assert_eq!(b3.hash(), client.best_containing(b2.hash(), Some(3)).unwrap().unwrap()); assert_eq!(b3.hash(), client.best_containing(b3.hash(), Some(3)).unwrap().unwrap()); assert_eq!(None, client.best_containing(b4.hash(), Some(3)).unwrap()); assert_eq!(c3.hash(), client.best_containing(c3.hash(), Some(3)).unwrap().unwrap()); assert_eq!(d2.hash(), client.best_containing(d2.hash(), Some(3)).unwrap().unwrap()); // search only blocks with number <= 2 assert_eq!(a2.hash(), client.best_containing(genesis_hash, Some(2)).unwrap().unwrap()); assert_eq!(a2.hash(), client.best_containing(a1.hash(), Some(2)).unwrap().unwrap()); assert_eq!(a2.hash(), client.best_containing(a2.hash(), Some(2)).unwrap().unwrap()); assert_eq!(None, client.best_containing(a3.hash(), Some(2)).unwrap()); assert_eq!(None, client.best_containing(a4.hash(), Some(2)).unwrap()); assert_eq!(None, client.best_containing(a5.hash(), Some(2)).unwrap()); assert_eq!(b2.hash(), client.best_containing(b2.hash(), Some(2)).unwrap().unwrap()); assert_eq!(None, client.best_containing(b3.hash(), Some(2)).unwrap()); assert_eq!(None, client.best_containing(b4.hash(), Some(2)).unwrap()); assert_eq!(None, client.best_containing(c3.hash(), Some(2)).unwrap()); assert_eq!(d2.hash(), client.best_containing(d2.hash(), Some(2)).unwrap().unwrap()); // search only blocks with number <= 1 assert_eq!(a1.hash(), client.best_containing(genesis_hash, Some(1)).unwrap().unwrap()); assert_eq!(a1.hash(), client.best_containing(a1.hash(), Some(1)).unwrap().unwrap()); assert_eq!(None, client.best_containing(a2.hash(), Some(1)).unwrap()); assert_eq!(None, client.best_containing(a3.hash(), Some(1)).unwrap()); assert_eq!(None, client.best_containing(a4.hash(), Some(1)).unwrap()); assert_eq!(None, client.best_containing(a5.hash(), Some(1)).unwrap()); assert_eq!(None, client.best_containing(b2.hash(), Some(1)).unwrap()); assert_eq!(None, client.best_containing(b3.hash(), Some(1)).unwrap()); assert_eq!(None, client.best_containing(b4.hash(), Some(1)).unwrap()); assert_eq!(None, client.best_containing(c3.hash(), Some(1)).unwrap()); assert_eq!(None, client.best_containing(d2.hash(), Some(1)).unwrap()); // search only blocks with number <= 0 assert_eq!(genesis_hash, client.best_containing(genesis_hash, Some(0)).unwrap().unwrap()); assert_eq!(None, client.best_containing(a1.hash(), Some(0)).unwrap()); assert_eq!(None, client.best_containing(a2.hash(), Some(0)).unwrap()); assert_eq!(None, client.best_containing(a3.hash(), Some(0)).unwrap()); assert_eq!(None, client.best_containing(a4.hash(), Some(0)).unwrap()); assert_eq!(None, client.best_containing(a5.hash(), Some(0)).unwrap()); assert_eq!(None, client.best_containing(b2.hash(), Some(0)).unwrap()); assert_eq!(None, client.best_containing(b3.hash(), Some(0)).unwrap()); assert_eq!(None, client.best_containing(b4.hash(), Some(0)).unwrap()); assert_eq!(None, client.best_containing(c3.hash().clone(), Some(0)).unwrap()); assert_eq!(None, client.best_containing(d2.hash().clone(), Some(0)).unwrap()); } #[test] fn best_containing_with_max_depth_higher_than_best() { // block tree: // G -> A1 -> A2 let client = test_client::new(); // G -> A1 let a1 = client.new_block().unwrap().bake().unwrap(); client.import(BlockOrigin::Own, a1.clone()).unwrap(); // A1 -> A2 let a2 = client.new_block().unwrap().bake().unwrap(); client.import(BlockOrigin::Own, a2.clone()).unwrap(); let genesis_hash = client.info().unwrap().chain.genesis_hash; assert_eq!(a2.hash(), client.best_containing(genesis_hash, Some(10)).unwrap().unwrap()); } #[test] fn key_changes_works() { let (client, _, test_cases) = prepare_client_with_key_changes(); for (index, (begin, end, key, expected_result)) in test_cases.into_iter().enumerate() { let end = client.block_hash(end).unwrap().unwrap(); let actual_result = client.key_changes(begin, BlockId::Hash(end), &StorageKey(key)).unwrap(); match actual_result == expected_result { true => (), false => panic!(format!("Failed test {}: actual = {:?}, expected = {:?}", index, actual_result, expected_result)), } } } #[test] fn import_with_justification() { use test_client::blockchain::Backend; let client = test_client::new(); // G -> A1 let a1 = client.new_block().unwrap().bake().unwrap(); client.import(BlockOrigin::Own, a1.clone()).unwrap(); // A1 -> A2 let a2 = client.new_block_at(&BlockId::Hash(a1.hash())).unwrap().bake().unwrap(); client.import(BlockOrigin::Own, a2.clone()).unwrap(); // A2 -> A3 let justification = vec![1, 2, 3]; let a3 = client.new_block_at(&BlockId::Hash(a2.hash())).unwrap().bake().unwrap(); client.import_justified(BlockOrigin::Own, a3.clone(), justification.clone()).unwrap(); assert_eq!( client.backend().blockchain().last_finalized().unwrap(), a3.hash(), ); assert_eq!( client.backend().blockchain().justification(BlockId::Hash(a3.hash())).unwrap(), Some(justification), ); assert_eq!( client.backend().blockchain().justification(BlockId::Hash(a1.hash())).unwrap(), None, ); assert_eq!( client.backend().blockchain().justification(BlockId::Hash(a2.hash())).unwrap(), None, ); } }