// Copyright 2017 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see .
//! Rust implementation of Polkadot contracts.
use std::sync::Arc;
use std::collections::HashMap;
use parity_wasm::{deserialize_buffer, ModuleInstanceInterface, ProgramInstance};
use parity_wasm::interpreter::{ItemIndex};
use parity_wasm::RuntimeValue::{I32, I64};
use primitives::contract::CallData;
use state_machine::{Externalities, CodeExecutor};
use error::{Error, ErrorKind, Result};
use wasm_utils::{MemoryInstance, UserDefinedElements,
AddModuleWithoutFullDependentInstance};
struct Heap {
end: u32,
}
impl Heap {
fn new() -> Self {
Heap {
end: 1024,
}
}
fn allocate(&mut self, size: u32) -> u32 {
let r = self.end;
self.end += size;
r
}
fn deallocate(&mut self, _offset: u32) {
}
}
struct FunctionExecutor<'e, E: Externalities + 'e> {
heap: Heap,
memory: Arc,
ext: &'e mut E,
}
impl<'e, E: Externalities> FunctionExecutor<'e, E> {
fn new(m: &Arc, e: &'e mut E) -> Self {
FunctionExecutor {
heap: Heap::new(),
memory: Arc::clone(m),
ext: e,
}
}
}
trait WritePrimitive {
fn write_primitive(&self, offset: u32, t: T);
}
impl WritePrimitive for MemoryInstance {
fn write_primitive(&self, offset: u32, t: u32) {
use byteorder::{LittleEndian, ByteOrder};
let mut r = [0u8; 4];
LittleEndian::write_u32(&mut r, t);
let _ = self.set(offset, &r);
}
}
impl_function_executor!(this: FunctionExecutor<'e, E>,
ext_print(utf8_data: *const u8, utf8_len: u32) => {
if let Ok(utf8) = this.memory.get(utf8_data, utf8_len as usize) {
if let Ok(message) = String::from_utf8(utf8) {
println!("Runtime: {}", message);
}
}
},
ext_print_num(number: u64) => {
println!("Runtime: {}", number);
},
ext_memcpy(dest: *mut u8, src: *const u8, count: usize) -> *mut u8 => {
let _ = this.memory.copy_nonoverlapping(src as usize, dest as usize, count as usize);
println!("memcpy {} from {}, {} bytes", dest, src, count);
dest
},
ext_memmove(dest: *mut u8, src: *const u8, count: usize) -> *mut u8 => {
let _ = this.memory.copy(src as usize, dest as usize, count as usize);
println!("memmove {} from {}, {} bytes", dest, src, count);
dest
},
ext_memset(dest: *mut u8, val: u32, count: usize) -> *mut u8 => {
let _ = this.memory.clear(dest as usize, val as u8, count as usize);
println!("memset {} with {}, {} bytes", dest, val, count);
dest
},
ext_malloc(size: usize) -> *mut u8 => {
let r = this.heap.allocate(size);
println!("malloc {} bytes at {}", size, r);
r
},
ext_free(addr: *mut u8) => {
this.heap.deallocate(addr);
println!("free {}", addr)
},
ext_set_storage(key_data: *const u8, key_len: u32, value_data: *const u8, value_len: u32) => {
if let (Ok(key), Ok(value)) = (this.memory.get(key_data, key_len as usize), this.memory.get(value_data, value_len as usize)) {
this.ext.set_storage(key, value);
}
},
ext_get_allocated_storage(key_data: *const u8, key_len: u32, written_out: *mut u32) -> *mut u8 => {
let (offset, written) = if let Ok(key) = this.memory.get(key_data, key_len as usize) {
if let Ok(value) = this.ext.storage(&key) {
let offset = this.heap.allocate(value.len() as u32) as u32;
let _ = this.memory.set(offset, &value);
(offset, value.len() as u32)
} else { (0, 0) }
} else { (0, 0) };
this.memory.write_primitive(written_out, written);
offset as u32
},
ext_get_storage_into(key_data: *const u8, key_len: u32, value_data: *mut u8, value_len: u32) -> u32 => {
if let Ok(key) = this.memory.get(key_data, key_len as usize) {
if let Ok(value) = this.ext.storage(&key) {
let written = ::std::cmp::min(value_len as usize, value.len());
let _ = this.memory.set(value_data, &value[0..written]);
written as u32
} else { 0 }
} else { 0 }
},
ext_deposit_log(_log_data: *const u8, _log_len: u32) => {
// TODO
}
=> <'e, E: Externalities + 'e>
);
/// Wasm rust executor for contracts.
///
/// Executes the provided code in a sandboxed wasm runtime.
#[derive(Debug, Default)]
pub struct WasmExecutor;
impl CodeExecutor for WasmExecutor {
type Error = Error;
fn call(
&self,
ext: &mut E,
code: &[u8],
method: &str,
data: &CallData,
) -> Result> {
// TODO: handle all expects as errors to be returned.
let program = ProgramInstance::new().expect("this really shouldn't be able to fail; qed");
let module = deserialize_buffer(code.to_vec()).expect("all modules compiled with rustc are valid wasm code; qed");
let module = program.add_module_by_sigs("test", module, map!["env" => FunctionExecutor::::SIGNATURES]).expect("runtime signatures always provided; qed");
let memory = module.memory(ItemIndex::Internal(0)).expect("all modules compiled with rustc include memory segments; qed");
let mut fec = FunctionExecutor::new(&memory, ext);
let size = data.0.len() as u32;
let offset = fec.heap.allocate(size);
memory.set(offset, &data.0).expect("heap always gives a sensible offset to write");
let returned = program
.params_with_external("env", &mut fec)
.map(|p| p
.add_argument(I32(offset as i32))
.add_argument(I32(size as i32)))
.and_then(|p| module.execute_export(method, p))
.map_err(|_| -> Error { ErrorKind::Runtime.into() })?;
if let Some(I64(r)) = returned {
memory.get(r as u32, (r >> 32) as u32 as usize)
.map_err(|_| ErrorKind::Runtime.into())
} else {
Err(ErrorKind::InvalidReturn.into())
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[derive(Debug, Default)]
struct TestExternalities {
storage: HashMap, Vec>,
}
impl Externalities for TestExternalities {
type Error = Error;
fn storage(&self, key: &[u8]) -> Result<&[u8]> {
Ok(self.storage.get(&key.to_vec()).map_or(&[] as &[u8], Vec::as_slice))
}
fn set_storage(&mut self, key: Vec, value: Vec) {
self.storage.insert(key, value);
}
}
#[test]
fn should_pass_externalities_at_call() {
let mut ext = TestExternalities::default();
ext.set_storage(b"\0code".to_vec(), b"The code".to_vec());
let program = ProgramInstance::new().unwrap();
let test_module = include_bytes!("../../runtime/target/wasm32-unknown-unknown/release/runtime_test.compact.wasm");
let module = deserialize_buffer(test_module.to_vec()).expect("Failed to load module");
let module = program.add_module_by_sigs("test", module, map!["env" => FunctionExecutor::::SIGNATURES]).expect("Failed to initialize module");
let output = {
let memory = module.memory(ItemIndex::Internal(0)).unwrap();
let mut fec = FunctionExecutor::new(&memory, &mut ext);
let data = b"Hello world";
let size = data.len() as u32;
let offset = fec.heap.allocate(size);
memory.set(offset, data).unwrap();
let returned = program
.params_with_external("env", &mut fec)
.map(|p| p
.add_argument(I32(offset as i32))
.add_argument(I32(size as i32)))
.and_then(|p| module.execute_export("test_data_in", p))
.map_err(|_| -> Error { ErrorKind::Runtime.into() }).expect("function should be callable");
if let Some(I64(r)) = returned {
println!("returned {:?} ({:?}, {:?})", r, r as u32, (r >> 32) as u32 as usize);
memory.get(r as u32, (r >> 32) as u32 as usize).expect("memory address should be reasonable.")
} else {
panic!("bad return value, not u64");
}
};
assert_eq!(output, b"all ok!".to_vec());
let expected: HashMap<_, _> = map![
b"\0code".to_vec() => b"Hello world".to_vec(),
b"input".to_vec() => b"Hello world".to_vec(),
b"code".to_vec() => b"The code".to_vec(),
b"\0validator_count".to_vec() => vec![1],
b"\0validator".to_vec() => b"Hello world".to_vec()
];
assert_eq!(expected, ext.storage);
}
}