// Copyright 2017 Parity Technologies (UK) Ltd. // This file is part of Polkadot. // Polkadot is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // Polkadot is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with Polkadot. If not, see . //! Rust implementation of Polkadot contracts. use std::sync::Arc; use std::collections::HashMap; use parity_wasm::{deserialize_buffer, ModuleInstanceInterface, ProgramInstance}; use parity_wasm::interpreter::{ItemIndex}; use parity_wasm::RuntimeValue::{I32, I64}; use primitives::contract::CallData; use state_machine::{Externalities, CodeExecutor}; use error::{Error, ErrorKind, Result}; use wasm_utils::{MemoryInstance, UserDefinedElements, AddModuleWithoutFullDependentInstance}; struct Heap { end: u32, } impl Heap { fn new() -> Self { Heap { end: 1024, } } fn allocate(&mut self, size: u32) -> u32 { let r = self.end; self.end += size; r } fn deallocate(&mut self, _offset: u32) { } } struct FunctionExecutor<'e, E: Externalities + 'e> { heap: Heap, memory: Arc, ext: &'e mut E, } impl<'e, E: Externalities> FunctionExecutor<'e, E> { fn new(m: &Arc, e: &'e mut E) -> Self { FunctionExecutor { heap: Heap::new(), memory: Arc::clone(m), ext: e, } } } trait WritePrimitive { fn write_primitive(&self, offset: u32, t: T); } impl WritePrimitive for MemoryInstance { fn write_primitive(&self, offset: u32, t: u32) { use byteorder::{LittleEndian, ByteOrder}; let mut r = [0u8; 4]; LittleEndian::write_u32(&mut r, t); let _ = self.set(offset, &r); } } impl_function_executor!(this: FunctionExecutor<'e, E>, ext_print(utf8_data: *const u8, utf8_len: u32) => { if let Ok(utf8) = this.memory.get(utf8_data, utf8_len as usize) { if let Ok(message) = String::from_utf8(utf8) { println!("Runtime: {}", message); } } }, ext_print_num(number: u64) => { println!("Runtime: {}", number); }, ext_memcpy(dest: *mut u8, src: *const u8, count: usize) -> *mut u8 => { let _ = this.memory.copy_nonoverlapping(src as usize, dest as usize, count as usize); println!("memcpy {} from {}, {} bytes", dest, src, count); dest }, ext_memmove(dest: *mut u8, src: *const u8, count: usize) -> *mut u8 => { let _ = this.memory.copy(src as usize, dest as usize, count as usize); println!("memmove {} from {}, {} bytes", dest, src, count); dest }, ext_memset(dest: *mut u8, val: u32, count: usize) -> *mut u8 => { let _ = this.memory.clear(dest as usize, val as u8, count as usize); println!("memset {} with {}, {} bytes", dest, val, count); dest }, ext_malloc(size: usize) -> *mut u8 => { let r = this.heap.allocate(size); println!("malloc {} bytes at {}", size, r); r }, ext_free(addr: *mut u8) => { this.heap.deallocate(addr); println!("free {}", addr) }, ext_set_storage(key_data: *const u8, key_len: u32, value_data: *const u8, value_len: u32) => { if let (Ok(key), Ok(value)) = (this.memory.get(key_data, key_len as usize), this.memory.get(value_data, value_len as usize)) { this.ext.set_storage(key, value); } }, ext_get_allocated_storage(key_data: *const u8, key_len: u32, written_out: *mut u32) -> *mut u8 => { let (offset, written) = if let Ok(key) = this.memory.get(key_data, key_len as usize) { if let Ok(value) = this.ext.storage(&key) { let offset = this.heap.allocate(value.len() as u32) as u32; let _ = this.memory.set(offset, &value); (offset, value.len() as u32) } else { (0, 0) } } else { (0, 0) }; this.memory.write_primitive(written_out, written); offset as u32 }, ext_get_storage_into(key_data: *const u8, key_len: u32, value_data: *mut u8, value_len: u32) -> u32 => { if let Ok(key) = this.memory.get(key_data, key_len as usize) { if let Ok(value) = this.ext.storage(&key) { let written = ::std::cmp::min(value_len as usize, value.len()); let _ = this.memory.set(value_data, &value[0..written]); written as u32 } else { 0 } } else { 0 } }, ext_chain_id() -> u64 => { this.ext.chain_id() } => <'e, E: Externalities + 'e> ); /// Wasm rust executor for contracts. /// /// Executes the provided code in a sandboxed wasm runtime. #[derive(Debug, Default)] pub struct WasmExecutor; impl CodeExecutor for WasmExecutor { type Error = Error; fn call( &self, ext: &mut E, code: &[u8], method: &str, data: &CallData, ) -> Result> { // TODO: handle all expects as errors to be returned. let program = ProgramInstance::new().expect("this really shouldn't be able to fail; qed"); let module = deserialize_buffer(code.to_vec()).expect("all modules compiled with rustc are valid wasm code; qed"); let module = program.add_module_by_sigs("test", module, map!["env" => FunctionExecutor::::SIGNATURES]).expect("runtime signatures always provided; qed"); let memory = module.memory(ItemIndex::Internal(0)).expect("all modules compiled with rustc include memory segments; qed"); let mut fec = FunctionExecutor::new(&memory, ext); let size = data.0.len() as u32; let offset = fec.heap.allocate(size); memory.set(offset, &data.0).expect("heap always gives a sensible offset to write"); let returned = program .params_with_external("env", &mut fec) .map(|p| p .add_argument(I32(offset as i32)) .add_argument(I32(size as i32))) .and_then(|p| module.execute_export(method, p)) .map_err(|_| -> Error { ErrorKind::Runtime.into() })?; if let Some(I64(r)) = returned { memory.get(r as u32, (r >> 32) as u32 as usize) .map_err(|_| ErrorKind::Runtime.into()) } else { Err(ErrorKind::InvalidReturn.into()) } } } #[cfg(test)] mod tests { use super::*; #[derive(Debug, Default)] struct TestExternalities { storage: HashMap, Vec>, } impl Externalities for TestExternalities { type Error = Error; fn storage(&self, key: &[u8]) -> Result<&[u8]> { Ok(self.storage.get(&key.to_vec()).map_or(&[] as &[u8], Vec::as_slice)) } fn set_storage(&mut self, key: Vec, value: Vec) { self.storage.insert(key, value); } } #[test] fn should_pass_externalities_at_call() { let mut ext = TestExternalities::default(); ext.set_storage(b"\0code".to_vec(), b"The code".to_vec()); let program = ProgramInstance::new().unwrap(); let test_module = include_bytes!("../../wasm-runtime/target/wasm32-unknown-unknown/release/runtime_test.compact.wasm"); let module = deserialize_buffer(test_module.to_vec()).expect("Failed to load module"); let module = program.add_module_by_sigs("test", module, map!["env" => FunctionExecutor::::SIGNATURES]).expect("Failed to initialize module"); let output = { let memory = module.memory(ItemIndex::Internal(0)).unwrap(); let mut fec = FunctionExecutor::new(&memory, &mut ext); let data = b"Hello world"; let size = data.len() as u32; let offset = fec.heap.allocate(size); memory.set(offset, data).unwrap(); let returned = program .params_with_external("env", &mut fec) .map(|p| p .add_argument(I32(offset as i32)) .add_argument(I32(size as i32))) .and_then(|p| module.execute_export("test_data_in", p)) .map_err(|_| -> Error { ErrorKind::Runtime.into() }).expect("function should be callable"); if let Some(I64(r)) = returned { println!("returned {:?} ({:?}, {:?})", r, r as u32, (r >> 32) as u32 as usize); memory.get(r as u32, (r >> 32) as u32 as usize).expect("memory address should be reasonable.") } else { panic!("bad return value, not u64"); } }; assert_eq!(output, b"all ok!".to_vec()); let expected: HashMap<_, _> = map![ b"\0code".to_vec() => b"Hello world".to_vec(), b"input".to_vec() => b"Hello world".to_vec(), b"code".to_vec() => b"The code".to_vec(), b"\0authority_count".to_vec() => vec![1], b"\0authority".to_vec() => b"Hello world".to_vec() ]; assert_eq!(expected, ext.storage); } }