// Copyright 2017-2020 Parity Technologies (UK) Ltd.
// This file is part of Substrate.
// Substrate is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Substrate is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Substrate. If not, see .
//! EVM execution module for Substrate
// Ensure we're `no_std` when compiling for Wasm.
#![cfg_attr(not(feature = "std"), no_std)]
mod backend;
pub use crate::backend::{Account, Log, Vicinity, Backend};
use sp_std::{vec::Vec, marker::PhantomData};
use frame_support::{ensure, decl_module, decl_storage, decl_event, decl_error};
use frame_support::weights::{Weight, DispatchClass, FunctionOf};
use frame_support::traits::{Currency, WithdrawReason, ExistenceRequirement};
use frame_system::{self as system, ensure_signed};
use sp_runtime::ModuleId;
use frame_support::weights::SimpleDispatchInfo;
use sp_core::{U256, H256, H160, Hasher};
use sp_runtime::{
DispatchResult, traits::{UniqueSaturatedInto, AccountIdConversion, SaturatedConversion},
};
use sha3::{Digest, Keccak256};
use evm::{ExitReason, ExitSucceed, ExitError};
use evm::executor::StackExecutor;
use evm::backend::ApplyBackend;
const MODULE_ID: ModuleId = ModuleId(*b"py/ethvm");
/// Type alias for currency balance.
pub type BalanceOf = <::Currency as Currency<::AccountId>>::Balance;
/// Trait that outputs the current transaction gas price.
pub trait FeeCalculator {
/// Return the minimal required gas price.
fn min_gas_price() -> U256;
}
impl FeeCalculator for () {
fn min_gas_price() -> U256 { U256::zero() }
}
/// Trait for converting account ids of `balances` module into
/// `H160` for EVM module.
///
/// Accounts and contracts of this module are stored in its own
/// storage, in an Ethereum-compatible format. In order to communicate
/// with the rest of Substrate module, we require an one-to-one
/// mapping of Substrate account to Ethereum address.
pub trait ConvertAccountId {
/// Given a Substrate address, return the corresponding Ethereum address.
fn convert_account_id(account_id: &A) -> H160;
}
/// Hash and then truncate the account id, taking the last 160-bit as the Ethereum address.
pub struct HashTruncateConvertAccountId(PhantomData);
impl Default for HashTruncateConvertAccountId {
fn default() -> Self {
Self(PhantomData)
}
}
impl> ConvertAccountId for HashTruncateConvertAccountId {
fn convert_account_id(account_id: &A) -> H160 {
let account_id = H::hash(account_id.as_ref());
let account_id_len = account_id.as_ref().len();
let mut value = [0u8; 20];
let value_len = value.len();
if value_len > account_id_len {
value[(value_len - account_id_len)..].copy_from_slice(account_id.as_ref());
} else {
value.copy_from_slice(&account_id.as_ref()[(account_id_len - value_len)..]);
}
H160::from(value)
}
}
/// Custom precompiles to be used by EVM engine.
pub trait Precompiles {
/// Try to execute the code address as precompile. If the code address is not
/// a precompile or the precompile is not yet available, return `None`.
/// Otherwise, calculate the amount of gas needed with given `input` and
/// `target_gas`. Return `Some(Ok(status, output, gas_used))` if the execution
/// is successful. Otherwise return `Some(Err(_))`.
fn execute(
address: H160,
input: &[u8],
target_gas: Option
) -> Option, usize), ExitError>>;
}
impl Precompiles for () {
fn execute(
_address: H160,
_input: &[u8],
_target_gas: Option
) -> Option, usize), ExitError>> {
None
}
}
/// EVM module trait
pub trait Trait: frame_system::Trait + pallet_timestamp::Trait {
/// Calculator for current gas price.
type FeeCalculator: FeeCalculator;
/// Convert account ID to H160;
type ConvertAccountId: ConvertAccountId;
/// Currency type for deposit and withdraw.
type Currency: Currency;
/// The overarching event type.
type Event: From + Into<::Event>;
/// Precompiles associated with this EVM engine.
type Precompiles: Precompiles;
}
decl_storage! {
trait Store for Module as Example {
Accounts get(fn accounts) config(): map hasher(blake2_256) H160 => Account;
AccountCodes: map hasher(blake2_256) H160 => Vec;
AccountStorages: double_map hasher(blake2_256) H160, hasher(blake2_256) H256 => H256;
}
}
decl_event! {
/// EVM events
pub enum Event {
/// Ethereum events from contracts.
Log(Log),
/// A contract has been created at given address.
Created(H160),
}
}
decl_error! {
pub enum Error for Module {
/// Not enough balance to perform action
BalanceLow,
/// Calculating total fee overflowed
FeeOverflow,
/// Calculating total payment overflowed
PaymentOverflow,
/// Withdraw fee failed
WithdrawFailed,
/// Gas price is too low.
GasPriceTooLow,
/// Call failed
ExitReasonFailed,
/// Call reverted
ExitReasonRevert,
/// Call returned VM fatal error
ExitReasonFatal,
/// Nonce is invalid
InvalidNonce,
}
}
decl_module! {
pub struct Module for enum Call where origin: T::Origin {
type Error = Error;
fn deposit_event() = default;
/// Despoit balance from currency/balances module into EVM.
#[weight = SimpleDispatchInfo::FixedNormal(10_000)]
fn deposit_balance(origin, value: BalanceOf) {
let sender = ensure_signed(origin)?;
let imbalance = T::Currency::withdraw(
&sender,
value,
WithdrawReason::Reserve.into(),
ExistenceRequirement::AllowDeath,
)?;
T::Currency::resolve_creating(&Self::account_id(), imbalance);
let bvalue = U256::from(UniqueSaturatedInto::::unique_saturated_into(value));
let address = T::ConvertAccountId::convert_account_id(&sender);
Accounts::mutate(&address, |account| {
account.balance += bvalue;
});
}
/// Withdraw balance from EVM into currency/balances module.
#[weight = SimpleDispatchInfo::FixedNormal(10_000)]
fn withdraw_balance(origin, value: BalanceOf) {
let sender = ensure_signed(origin)?;
let address = T::ConvertAccountId::convert_account_id(&sender);
let bvalue = U256::from(UniqueSaturatedInto::::unique_saturated_into(value));
let mut account = Accounts::get(&address);
account.balance = account.balance.checked_sub(bvalue)
.ok_or(Error::::BalanceLow)?;
let imbalance = T::Currency::withdraw(
&Self::account_id(),
value,
WithdrawReason::Reserve.into(),
ExistenceRequirement::AllowDeath
)?;
Accounts::insert(&address, account);
T::Currency::resolve_creating(&sender, imbalance);
}
/// Issue an EVM call operation. This is similar to a message call transaction in Ethereum.
#[weight = FunctionOf(|(_, _, _, gas_limit, gas_price, _): (&H160, &Vec, &U256, &u32, &U256, &Option)| (*gas_price).saturated_into::().saturating_mul(*gas_limit), DispatchClass::Normal, true)]
fn call(
origin,
target: H160,
input: Vec,
value: U256,
gas_limit: u32,
gas_price: U256,
nonce: Option,
) -> DispatchResult {
let sender = ensure_signed(origin)?;
ensure!(gas_price >= T::FeeCalculator::min_gas_price(), Error::::GasPriceTooLow);
let source = T::ConvertAccountId::convert_account_id(&sender);
let vicinity = Vicinity {
gas_price,
origin: source,
};
let mut backend = Backend::::new(&vicinity);
let mut executor = StackExecutor::new_with_precompile(
&backend,
gas_limit as usize,
&backend::GASOMETER_CONFIG,
T::Precompiles::execute,
);
let total_fee = gas_price.checked_mul(U256::from(gas_limit))
.ok_or(Error::::FeeOverflow)?;
let total_payment = value.checked_add(total_fee).ok_or(Error::::PaymentOverflow)?;
let source_account = Accounts::get(&source);
ensure!(source_account.balance >= total_payment, Error::::BalanceLow);
executor.withdraw(source, total_fee).map_err(|_| Error::::WithdrawFailed)?;
if let Some(nonce) = nonce {
ensure!(source_account.nonce == nonce, Error::::InvalidNonce);
}
let reason = executor.transact_call(
source,
target,
value,
input,
gas_limit as usize,
);
let ret = match reason {
ExitReason::Succeed(_) => Ok(()),
ExitReason::Error(_) => Err(Error::::ExitReasonFailed),
ExitReason::Revert(_) => Err(Error::::ExitReasonRevert),
ExitReason::Fatal(_) => Err(Error::::ExitReasonFatal),
};
let actual_fee = executor.fee(gas_price);
executor.deposit(source, total_fee.saturating_sub(actual_fee));
let (values, logs) = executor.deconstruct();
backend.apply(values, logs, true);
ret.map_err(Into::into)
}
/// Issue an EVM create operation. This is similar to a contract creation transaction in
/// Ethereum.
#[weight = FunctionOf(|(_, _, gas_limit, gas_price, _): (&Vec, &U256, &u32, &U256, &Option)| (*gas_price).saturated_into::().saturating_mul(*gas_limit), DispatchClass::Normal, true)]
fn create(
origin,
init: Vec,
value: U256,
gas_limit: u32,
gas_price: U256,
nonce: Option,
) -> DispatchResult {
let sender = ensure_signed(origin)?;
ensure!(gas_price >= T::FeeCalculator::min_gas_price(), Error::::GasPriceTooLow);
let source = T::ConvertAccountId::convert_account_id(&sender);
let vicinity = Vicinity {
gas_price,
origin: source,
};
let mut backend = Backend::::new(&vicinity);
let mut executor = StackExecutor::new_with_precompile(
&backend,
gas_limit as usize,
&backend::GASOMETER_CONFIG,
T::Precompiles::execute,
);
let total_fee = gas_price.checked_mul(U256::from(gas_limit))
.ok_or(Error::::FeeOverflow)?;
let total_payment = value.checked_add(total_fee).ok_or(Error::::PaymentOverflow)?;
let source_account = Accounts::get(&source);
ensure!(source_account.balance >= total_payment, Error::::BalanceLow);
executor.withdraw(source, total_fee).map_err(|_| Error::::WithdrawFailed)?;
if let Some(nonce) = nonce {
ensure!(source_account.nonce == nonce, Error::::InvalidNonce);
}
let create_address = executor.create_address(
evm::CreateScheme::Legacy { caller: source }
);
let reason = executor.transact_create(
source,
value,
init,
gas_limit as usize,
);
let ret = match reason {
ExitReason::Succeed(_) => {
Module::::deposit_event(Event::Created(create_address));
Ok(())
},
ExitReason::Error(_) => Err(Error::::ExitReasonFailed),
ExitReason::Revert(_) => Err(Error::::ExitReasonRevert),
ExitReason::Fatal(_) => Err(Error::::ExitReasonFatal),
};
let actual_fee = executor.fee(gas_price);
executor.deposit(source, total_fee.saturating_sub(actual_fee));
let (values, logs) = executor.deconstruct();
backend.apply(values, logs, true);
ret.map_err(Into::into)
}
/// Issue an EVM create2 operation.
#[weight = FunctionOf(|(_, _, _, gas_limit, gas_price, _): (&Vec, &H256, &U256, &u32, &U256, &Option)| (*gas_price).saturated_into::().saturating_mul(*gas_limit), DispatchClass::Normal, true)]
fn create2(
origin,
init: Vec,
salt: H256,
value: U256,
gas_limit: u32,
gas_price: U256,
nonce: Option,
) -> DispatchResult {
let sender = ensure_signed(origin)?;
ensure!(gas_price >= T::FeeCalculator::min_gas_price(), Error::::GasPriceTooLow);
let source = T::ConvertAccountId::convert_account_id(&sender);
let vicinity = Vicinity {
gas_price,
origin: source,
};
let mut backend = Backend::::new(&vicinity);
let mut executor = StackExecutor::new_with_precompile(
&backend,
gas_limit as usize,
&backend::GASOMETER_CONFIG,
T::Precompiles::execute,
);
let total_fee = gas_price.checked_mul(U256::from(gas_limit))
.ok_or(Error::::FeeOverflow)?;
let total_payment = value.checked_add(total_fee).ok_or(Error::::PaymentOverflow)?;
let source_account = Accounts::get(&source);
ensure!(source_account.balance >= total_payment, Error::::BalanceLow);
executor.withdraw(source, total_fee).map_err(|_| Error::::WithdrawFailed)?;
if let Some(nonce) = nonce {
ensure!(source_account.nonce == nonce, Error::::InvalidNonce);
}
let code_hash = H256::from_slice(Keccak256::digest(&init).as_slice());
let create_address = executor.create_address(
evm::CreateScheme::Create2 { caller: source, code_hash, salt }
);
let reason = executor.transact_create2(
source,
value,
init,
salt,
gas_limit as usize,
);
let ret = match reason {
ExitReason::Succeed(_) => {
Module::::deposit_event(Event::Created(create_address));
Ok(())
},
ExitReason::Error(_) => Err(Error::::ExitReasonFailed),
ExitReason::Revert(_) => Err(Error::::ExitReasonRevert),
ExitReason::Fatal(_) => Err(Error::::ExitReasonFatal),
};
let actual_fee = executor.fee(gas_price);
executor.deposit(source, total_fee.saturating_sub(actual_fee));
let (values, logs) = executor.deconstruct();
backend.apply(values, logs, true);
ret.map_err(Into::into)
}
}
}
impl Module {
/// The account ID of the EVM module.
///
/// This actually does computation. If you need to keep using it, then make sure you cache the
/// value and only call this once.
pub fn account_id() -> T::AccountId {
MODULE_ID.into_account()
}
/// Check whether an account is empty.
pub fn is_account_empty(address: &H160) -> bool {
let account = Accounts::get(address);
let code_len = AccountCodes::decode_len(address).unwrap_or(0);
account.nonce == U256::zero() &&
account.balance == U256::zero() &&
code_len == 0
}
/// Remove an account if its empty.
pub fn remove_account_if_empty(address: &H160) {
if Self::is_account_empty(address) {
Self::remove_account(address)
}
}
/// Remove an account from state.
fn remove_account(address: &H160) {
Accounts::remove(address);
AccountCodes::remove(address);
AccountStorages::remove_prefix(address);
}
}