Newer
Older
// Copyright 2017-2020 Parity Technologies (UK) Ltd.
// This file is part of Substrate.
// Substrate is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Substrate is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Substrate. If not, see <http://www.gnu.org/licenses/>.
//! EVM execution module for Substrate
// Ensure we're `no_std` when compiling for Wasm.
#![cfg_attr(not(feature = "std"), no_std)]
mod backend;
pub use crate::backend::{Account, Log, Vicinity, Backend};
use sp_std::{vec::Vec, marker::PhantomData};
use frame_support::{ensure, decl_module, decl_storage, decl_event, decl_error};
use frame_support::weights::{Weight, DispatchClass, FunctionOf};
use frame_support::traits::{Currency, WithdrawReason, ExistenceRequirement};
use frame_system::{self as system, ensure_signed};
use frame_support::weights::SimpleDispatchInfo;
use sp_core::{U256, H256, H160, Hasher};
use sp_runtime::{
DispatchResult, traits::{UniqueSaturatedInto, AccountIdConversion, SaturatedConversion},
};
use sha3::{Digest, Keccak256};
use evm::{ExitReason, ExitSucceed, ExitError};
use evm::executor::StackExecutor;
use evm::backend::ApplyBackend;
const MODULE_ID: ModuleId = ModuleId(*b"py/ethvm");
pub type BalanceOf<T> = <<T as Trait>::Currency as Currency<<T as frame_system::Trait>::AccountId>>::Balance;
/// Trait that outputs the current transaction gas price.
pub trait FeeCalculator {
/// Return the minimal required gas price.
fn min_gas_price() -> U256;
}
impl FeeCalculator for () {
fn min_gas_price() -> U256 { U256::zero() }
}
/// Trait for converting account ids of `balances` module into
/// `H160` for EVM module.
///
/// Accounts and contracts of this module are stored in its own
/// storage, in an Ethereum-compatible format. In order to communicate
/// with the rest of Substrate module, we require an one-to-one
/// mapping of Substrate account to Ethereum address.
pub trait ConvertAccountId<A> {
/// Given a Substrate address, return the corresponding Ethereum address.
fn convert_account_id(account_id: &A) -> H160;
}
/// Hash and then truncate the account id, taking the last 160-bit as the Ethereum address.
pub struct HashTruncateConvertAccountId<H>(PhantomData<H>);
impl<H: Hasher> Default for HashTruncateConvertAccountId<H> {
fn default() -> Self {
Self(PhantomData)
}
}
impl<H: Hasher, A: AsRef<[u8]>> ConvertAccountId<A> for HashTruncateConvertAccountId<H> {
fn convert_account_id(account_id: &A) -> H160 {
let account_id = H::hash(account_id.as_ref());
let account_id_len = account_id.as_ref().len();
let mut value = [0u8; 20];
let value_len = value.len();
if value_len > account_id_len {
value[(value_len - account_id_len)..].copy_from_slice(account_id.as_ref());
} else {
value.copy_from_slice(&account_id.as_ref()[(account_id_len - value_len)..]);
}
H160::from(value)
}
}
/// Custom precompiles to be used by EVM engine.
pub trait Precompiles {
/// Try to execute the code address as precompile. If the code address is not
/// a precompile or the precompile is not yet available, return `None`.
/// Otherwise, calculate the amount of gas needed with given `input` and
/// `target_gas`. Return `Some(Ok(status, output, gas_used))` if the execution
/// is successful. Otherwise return `Some(Err(_))`.
fn execute(
address: H160,
input: &[u8],
target_gas: Option<usize>
) -> Option<core::result::Result<(ExitSucceed, Vec<u8>, usize), ExitError>>;
}
impl Precompiles for () {
fn execute(
_address: H160,
_input: &[u8],
_target_gas: Option<usize>
) -> Option<core::result::Result<(ExitSucceed, Vec<u8>, usize), ExitError>> {
None
}
}
/// EVM module trait
pub trait Trait: frame_system::Trait + pallet_timestamp::Trait {
/// Calculator for current gas price.
type FeeCalculator: FeeCalculator;
/// Convert account ID to H160;
type ConvertAccountId: ConvertAccountId<Self::AccountId>;
/// Currency type for deposit and withdraw.
type Currency: Currency<Self::AccountId>;
/// The overarching event type.
type Event: From<Event> + Into<<Self as frame_system::Trait>::Event>;
/// Precompiles associated with this EVM engine.
type Precompiles: Precompiles;
}
decl_storage! {
trait Store for Module<T: Trait> as EVM {
Accounts get(fn accounts) config(): map hasher(blake2_256) H160 => Account;
AccountCodes: map hasher(blake2_256) H160 => Vec<u8>;
AccountStorages: double_map hasher(blake2_256) H160, hasher(blake2_256) H256 => H256;
/// EVM events
pub enum Event {
/// Ethereum events from contracts.
Log(Log),
/// A contract has been created at given address.
Created(H160),
pub enum Error for Module<T: Trait> {
/// Not enough balance to perform action
BalanceLow,
/// Calculating total fee overflowed
FeeOverflow,
/// Calculating total payment overflowed
PaymentOverflow,
/// Withdraw fee failed
WithdrawFailed,
/// Gas price is too low.
GasPriceTooLow,
/// Call failed
ExitReasonFailed,
/// Call reverted
ExitReasonRevert,
/// Call returned VM fatal error
ExitReasonFatal,
/// Nonce is invalid
InvalidNonce,
decl_module! {
pub struct Module<T: Trait> for enum Call where origin: T::Origin {
/// Deposit balance from currency/balances module into EVM.
fn deposit_balance(origin, value: BalanceOf<T>) {
let sender = ensure_signed(origin)?;
let imbalance = T::Currency::withdraw(
&sender,
value,
WithdrawReason::Reserve.into(),
ExistenceRequirement::AllowDeath,
T::Currency::resolve_creating(&Self::account_id(), imbalance);
let bvalue = U256::from(UniqueSaturatedInto::<u128>::unique_saturated_into(value));
let address = T::ConvertAccountId::convert_account_id(&sender);
Accounts::mutate(&address, |account| {
account.balance += bvalue;
});
}
/// Withdraw balance from EVM into currency/balances module.
fn withdraw_balance(origin, value: BalanceOf<T>) {
let sender = ensure_signed(origin)?;
let address = T::ConvertAccountId::convert_account_id(&sender);
let bvalue = U256::from(UniqueSaturatedInto::<u128>::unique_saturated_into(value));
let mut account = Accounts::get(&address);
account.balance = account.balance.checked_sub(bvalue)
.ok_or(Error::<T>::BalanceLow)?;
let imbalance = T::Currency::withdraw(
&Self::account_id(),
value,
WithdrawReason::Reserve.into(),
ExistenceRequirement::AllowDeath
)?;
Accounts::insert(&address, account);
T::Currency::resolve_creating(&sender, imbalance);
/// Issue an EVM call operation. This is similar to a message call transaction in Ethereum.
#[weight = FunctionOf(|(_, _, _, gas_limit, gas_price, _): (&H160, &Vec<u8>, &U256, &u32, &U256, &Option<U256>)| (*gas_price).saturated_into::<Weight>().saturating_mul(*gas_limit), DispatchClass::Normal, true)]
fn call(
origin,
target: H160,
input: Vec<u8>,
value: U256,
gas_limit: u32,
gas_price: U256,
) -> DispatchResult {
let sender = ensure_signed(origin)?;
let source = T::ConvertAccountId::convert_account_id(&sender);
Self::execute_evm(
gas_limit,
gas_price,
nonce,
|executor| ((), executor.transact_call(
source,
target,
value,
input,
gas_limit as usize,
)),
).map_err(Into::into)
/// Issue an EVM create operation. This is similar to a contract creation transaction in
/// Ethereum.
#[weight = FunctionOf(|(_, _, gas_limit, gas_price, _): (&Vec<u8>, &U256, &u32, &U256, &Option<U256>)| (*gas_price).saturated_into::<Weight>().saturating_mul(*gas_limit), DispatchClass::Normal, true)]
fn create(
origin,
init: Vec<u8>,
value: U256,
gas_limit: u32,
gas_price: U256,
) -> DispatchResult {
let sender = ensure_signed(origin)?;
let source = T::ConvertAccountId::convert_account_id(&sender);
let create_address = Self::execute_evm(
gas_limit,
gas_price,
nonce,
|executor| {
(executor.create_address(
evm::CreateScheme::Legacy { caller: source },
), executor.transact_create(
source,
value,
init,
gas_limit as usize,
))
Module::<T>::deposit_event(Event::Created(create_address));
Ok(())
}
/// Issue an EVM create2 operation.
#[weight = FunctionOf(|(_, _, _, gas_limit, gas_price, _): (&Vec<u8>, &H256, &U256, &u32, &U256, &Option<U256>)| (*gas_price).saturated_into::<Weight>().saturating_mul(*gas_limit), DispatchClass::Normal, true)]
fn create2(
origin,
init: Vec<u8>,
salt: H256,
value: U256,
gas_limit: u32,
gas_price: U256,
nonce: Option<U256>,
) -> DispatchResult {
let sender = ensure_signed(origin)?;
let source = T::ConvertAccountId::convert_account_id(&sender);
let code_hash = H256::from_slice(Keccak256::digest(&init).as_slice());
let create_address = Self::execute_evm(
source,
value,
gas_limit,
gas_price,
nonce,
|executor| {
(executor.create_address(
evm::CreateScheme::Create2 { caller: source, code_hash, salt },
), executor.transact_create2(
source,
value,
init,
salt,
gas_limit as usize,
))
Module::<T>::deposit_event(Event::Created(create_address));
Ok(())
/// The account ID of the EVM module.
///
/// This actually does computation. If you need to keep using it, then make sure you cache the
/// value and only call this once.
pub fn account_id() -> T::AccountId {
MODULE_ID.into_account()
}
/// Check whether an account is empty.
pub fn is_account_empty(address: &H160) -> bool {
let account = Accounts::get(address);
let code_len = AccountCodes::decode_len(address).unwrap_or(0);
account.nonce == U256::zero() &&
account.balance == U256::zero() &&
code_len == 0
}
/// Remove an account if its empty.
pub fn remove_account_if_empty(address: &H160) {
if Self::is_account_empty(address) {
Self::remove_account(address)
}
}
/// Remove an account from state.
fn remove_account(address: &H160) {
Accounts::remove(address);
AccountCodes::remove(address);
AccountStorages::remove_prefix(address);
}
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
/// Execute an EVM operation.
fn execute_evm<F, R>(
source: H160,
value: U256,
gas_limit: u32,
gas_price: U256,
nonce: Option<U256>,
f: F,
) -> Result<R, Error<T>> where
F: FnOnce(&mut StackExecutor<Backend<T>>) -> (R, ExitReason),
{
ensure!(gas_price >= T::FeeCalculator::min_gas_price(), Error::<T>::GasPriceTooLow);
let vicinity = Vicinity {
gas_price,
origin: source,
};
let mut backend = Backend::<T>::new(&vicinity);
let mut executor = StackExecutor::new_with_precompile(
&backend,
gas_limit as usize,
&backend::GASOMETER_CONFIG,
T::Precompiles::execute,
);
let total_fee = gas_price.checked_mul(U256::from(gas_limit))
.ok_or(Error::<T>::FeeOverflow)?;
let total_payment = value.checked_add(total_fee).ok_or(Error::<T>::PaymentOverflow)?;
let source_account = Accounts::get(&source);
ensure!(source_account.balance >= total_payment, Error::<T>::BalanceLow);
executor.withdraw(source, total_fee).map_err(|_| Error::<T>::WithdrawFailed)?;
if let Some(nonce) = nonce {
ensure!(source_account.nonce == nonce, Error::<T>::InvalidNonce);
}
let (retv, reason) = f(&mut executor);
let ret = match reason {
ExitReason::Succeed(_) => Ok(retv),
ExitReason::Error(_) => Err(Error::<T>::ExitReasonFailed),
ExitReason::Revert(_) => Err(Error::<T>::ExitReasonRevert),
ExitReason::Fatal(_) => Err(Error::<T>::ExitReasonFatal),
};
let actual_fee = executor.fee(gas_price);
executor.deposit(source, total_fee.saturating_sub(actual_fee));
let (values, logs) = executor.deconstruct();
backend.apply(values, logs, true);
ret
}