Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
// Copyright 2017 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
//! Rust implementation of Polkadot contracts.
use std::sync::Arc;
use std::collections::HashMap;
use parity_wasm::{deserialize_buffer, ModuleInstanceInterface, ProgramInstance};
use parity_wasm::interpreter::{ItemIndex};
use parity_wasm::RuntimeValue::{I32, I64};
use primitives::contract::CallData;
use state_machine::{Externalities, CodeExecutor};
use error::{Error, ErrorKind, Result};
use wasm_utils::{MemoryInstance, UserDefinedElements,
AddModuleWithoutFullDependentInstance};
struct Heap {
end: u32,
}
impl Heap {
fn new() -> Self {
Heap {
end: 1024,
}
}
fn allocate(&mut self, size: u32) -> u32 {
let r = self.end;
self.end += size;
r
}
fn deallocate(&mut self, _offset: u32) {
}
}
struct FunctionExecutor<'e, E: Externalities + 'e> {
heap: Heap,
memory: Arc<MemoryInstance>,
ext: &'e mut E,
}
impl<'e, E: Externalities> FunctionExecutor<'e, E> {
fn new(m: &Arc<MemoryInstance>, e: &'e mut E) -> Self {
FunctionExecutor {
heap: Heap::new(),
memory: Arc::clone(m),
ext: e,
}
}
}
trait WritePrimitive<T: Sized> {
fn write_primitive(&self, offset: u32, t: T);
}
impl WritePrimitive<u32> for MemoryInstance {
fn write_primitive(&self, offset: u32, t: u32) {
use byteorder::{LittleEndian, ByteOrder};
let mut r = [0u8; 4];
LittleEndian::write_u32(&mut r, t);
let _ = self.set(offset, &r);
}
}
impl_function_executor!(this: FunctionExecutor<'e, E>,
ext_print(utf8_data: *const u8, utf8_len: i32) => {
if let Ok(utf8) = this.memory.get(utf8_data, utf8_len as usize) {
if let Ok(message) = String::from_utf8(utf8) {
println!("Runtime: {}", message);
}
}
},
ext_print_num(number: u64) => {
println!("Runtime: {}", number);
},
ext_memcpy(dest: *mut u8, src: *const u8, count: usize) -> *mut u8 => {
let _ = this.memory.copy_nonoverlapping(src as usize, dest as usize, count as usize);
println!("memcpy {} from {}, {} bytes", dest, src, count);
dest
},
ext_memmove(dest: *mut u8, src: *const u8, count: usize) -> *mut u8 => {
let _ = this.memory.copy(src as usize, dest as usize, count as usize);
println!("memmove {} from {}, {} bytes", dest, src, count);
dest
},
ext_memset(dest: *mut u8, val: i32, count: usize) -> *mut u8 => {
let _ = this.memory.clear(dest as usize, val as u8, count as usize);
println!("memset {} with {}, {} bytes", dest, val, count);
dest
},
ext_malloc(size: usize) -> *mut u8 => {
let r = this.heap.allocate(size);
println!("malloc {} bytes at {}", size, r);
r
},
ext_free(addr: *mut u8) => {
this.heap.deallocate(addr);
println!("free {}", addr)
},
ext_set_storage(key_data: *const u8, key_len: i32, value_data: *const u8, value_len: i32) => {
if let (Ok(key), Ok(value)) = (this.memory.get(key_data, key_len as usize), this.memory.get(value_data, value_len as usize)) {
this.ext.set_storage(key, value);
}
},
ext_get_allocated_storage(key_data: *const u8, key_len: i32, written_out: *mut i32) -> *mut u8 => {
let (offset, written) = if let Ok(key) = this.memory.get(key_data, key_len as usize) {
if let Ok(value) = this.ext.storage(&key) {
let offset = this.heap.allocate(value.len() as u32) as u32;
let _ = this.memory.set(offset, &value);
(offset, value.len() as u32)
} else { (0, 0) }
} else { (0, 0) };
this.memory.write_primitive(written_out, written);
offset as u32
}
=> <'e, E: Externalities + 'e>
);
/// Wasm rust executor for contracts.
///
/// Executes the provided code in a sandboxed wasm runtime.
#[derive(Debug, Default)]
pub struct WasmExecutor;
impl CodeExecutor for WasmExecutor {
type Error = Error;
fn call<E: Externalities>(
&self,
ext: &mut E,
code: &[u8],
method: &str,
data: &CallData,
) -> Result<Vec<u8>> {
// TODO: handle all expects as errors to be returned.
let program = ProgramInstance::new().expect("this really shouldn't be able to fail; qed");
let module = deserialize_buffer(code.to_vec()).expect("all modules compiled with rustc are valid wasm code; qed");
let module = program.add_module_by_sigs("test", module, map!["env" => FunctionExecutor::<E>::SIGNATURES]).expect("runtime signatures always provided; qed");
let memory = module.memory(ItemIndex::Internal(0)).expect("all modules compiled with rustc include memory segments; qed");
let mut fec = FunctionExecutor::new(&memory, ext);
let size = data.0.len() as u32;
let offset = fec.heap.allocate(size);
memory.set(offset, &data.0).expect("heap always gives a sensible offset to write");
let returned = program
.params_with_external("env", &mut fec)
.map(|p| p
.add_argument(I32(offset as i32))
.add_argument(I32(size as i32)))
.and_then(|p| module.execute_export(method, p))
.map_err(|_| -> Error { ErrorKind::Runtime.into() })?;
if let Some(I64(r)) = returned {
memory.get(r as u32, (r >> 32) as u32 as usize)
.map_err(|_| ErrorKind::Runtime.into())
} else {
Err(ErrorKind::InvalidReturn.into())
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[derive(Debug, Default)]
struct TestExternalities {
storage: HashMap<Vec<u8>, Vec<u8>>,
}
impl Externalities for TestExternalities {
type Error = Error;
fn storage(&self, key: &[u8]) -> Result<&[u8]> {
Ok(self.storage.get(&key.to_vec()).map_or(&[] as &[u8], Vec::as_slice))
}
fn set_storage(&mut self, key: Vec<u8>, value: Vec<u8>) {
self.storage.insert(key, value);
}
}
#[test]
fn should_pass_externalities_at_call() {
let mut ext = TestExternalities::default();
ext.set_storage(b"\0code".to_vec(), b"The code".to_vec());
let program = ProgramInstance::new().unwrap();
let test_module = include_bytes!("../../runtime/target/wasm32-unknown-unknown/release/runtime_test.compact.wasm");
let module = deserialize_buffer(test_module.to_vec()).expect("Failed to load module");
let module = program.add_module_by_sigs("test", module, map!["env" => FunctionExecutor::<TestExternalities>::SIGNATURES]).expect("Failed to initialize module");
let output = {
let memory = module.memory(ItemIndex::Internal(0)).unwrap();
let mut fec = FunctionExecutor::new(&memory, &mut ext);
let data = b"Hello world";
let size = data.len() as u32;
let offset = fec.heap.allocate(size);
memory.set(offset, data).unwrap();
let returned = program
.params_with_external("env", &mut fec)
.map(|p| p
.add_argument(I32(offset as i32))
.add_argument(I32(size as i32)))
.and_then(|p| module.execute_export("test_data_in", p))
.map_err(|_| -> Error { ErrorKind::Runtime.into() }).expect("function should be callable");
if let Some(I64(r)) = returned {
println!("returned {:?} ({:?}, {:?})", r, r as u32, (r >> 32) as u32 as usize);
memory.get(r as u32, (r >> 32) as u32 as usize).expect("memory address should be reasonable.")
} else {
panic!("bad return value, not u64");
}
};
assert_eq!(output, b"all ok!".to_vec());
let expected: HashMap<_, _> = map![
b"\0code".to_vec() => b"Hello world".to_vec(),
b"input".to_vec() => b"Hello world".to_vec(),
b"code".to_vec() => b"The code".to_vec(),
b"\0validator_count".to_vec() => vec![1],
b"\0validator".to_vec() => b"Hello world".to_vec()
];
assert_eq!(expected, ext.storage);
}
}