Newer
Older
// Copyright 2017 Parity Technologies (UK) Ltd.
// This file is part of Polkadot.
// Polkadot is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// Polkadot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with Polkadot. If not, see <http://www.gnu.org/licenses/>.
//! Rust implementation of Polkadot contracts.
use std::sync::Arc;
use std::collections::HashMap;
use parity_wasm::{deserialize_buffer, ModuleInstanceInterface, ProgramInstance};
use parity_wasm::interpreter::{ItemIndex};
use parity_wasm::RuntimeValue::{I32, I64};
use primitives::contract::CallData;
use state_machine::{Externalities, CodeExecutor};
use error::{Error, ErrorKind, Result};
use wasm_utils::{MemoryInstance, UserDefinedElements,
AddModuleWithoutFullDependentInstance};
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
struct Heap {
end: u32,
}
impl Heap {
fn new() -> Self {
Heap {
end: 1024,
}
}
fn allocate(&mut self, size: u32) -> u32 {
let r = self.end;
self.end += size;
r
}
fn deallocate(&mut self, _offset: u32) {
}
}
struct FunctionExecutor<'e, E: Externalities + 'e> {
heap: Heap,
memory: Arc<MemoryInstance>,
ext: &'e mut E,
}
impl<'e, E: Externalities> FunctionExecutor<'e, E> {
fn new(m: &Arc<MemoryInstance>, e: &'e mut E) -> Self {
FunctionExecutor {
heap: Heap::new(),
memory: Arc::clone(m),
ext: e,
}
}
}
trait WritePrimitive<T: Sized> {
fn write_primitive(&self, offset: u32, t: T);
}
impl WritePrimitive<u32> for MemoryInstance {
fn write_primitive(&self, offset: u32, t: u32) {
use byteorder::{LittleEndian, ByteOrder};
let mut r = [0u8; 4];
LittleEndian::write_u32(&mut r, t);
let _ = self.set(offset, &r);
}
}
impl_function_executor!(this: FunctionExecutor<'e, E>,
ext_print(utf8_data: *const u8, utf8_len: u32) => {
if let Ok(utf8) = this.memory.get(utf8_data, utf8_len as usize) {
if let Ok(message) = String::from_utf8(utf8) {
println!("Runtime: {}", message);
}
}
},
ext_print_num(number: u64) => {
println!("Runtime: {}", number);
},
ext_memcpy(dest: *mut u8, src: *const u8, count: usize) -> *mut u8 => {
let _ = this.memory.copy_nonoverlapping(src as usize, dest as usize, count as usize);
println!("memcpy {} from {}, {} bytes", dest, src, count);
dest
},
ext_memmove(dest: *mut u8, src: *const u8, count: usize) -> *mut u8 => {
let _ = this.memory.copy(src as usize, dest as usize, count as usize);
println!("memmove {} from {}, {} bytes", dest, src, count);
dest
},
ext_memset(dest: *mut u8, val: u32, count: usize) -> *mut u8 => {
let _ = this.memory.clear(dest as usize, val as u8, count as usize);
println!("memset {} with {}, {} bytes", dest, val, count);
dest
},
ext_malloc(size: usize) -> *mut u8 => {
let r = this.heap.allocate(size);
println!("malloc {} bytes at {}", size, r);
r
},
ext_free(addr: *mut u8) => {
this.heap.deallocate(addr);
println!("free {}", addr)
},
ext_set_storage(key_data: *const u8, key_len: u32, value_data: *const u8, value_len: u32) => {
if let (Ok(key), Ok(value)) = (this.memory.get(key_data, key_len as usize), this.memory.get(value_data, value_len as usize)) {
this.ext.set_storage(key, value);
}
},
ext_get_allocated_storage(key_data: *const u8, key_len: u32, written_out: *mut u32) -> *mut u8 => {
let (offset, written) = if let Ok(key) = this.memory.get(key_data, key_len as usize) {
if let Ok(value) = this.ext.storage(&key) {
let offset = this.heap.allocate(value.len() as u32) as u32;
let _ = this.memory.set(offset, &value);
(offset, value.len() as u32)
} else { (0, 0) }
} else { (0, 0) };
this.memory.write_primitive(written_out, written);
offset as u32
},
ext_get_storage_into(key_data: *const u8, key_len: u32, value_data: *mut u8, value_len: u32) -> u32 => {
if let Ok(key) = this.memory.get(key_data, key_len as usize) {
if let Ok(value) = this.ext.storage(&key) {
let written = ::std::cmp::min(value_len as usize, value.len());
let _ = this.memory.set(value_data, &value[0..written]);
written as u32
} else { 0 }
} else { 0 }
},
},
ext_keccak256(data: *const u8, len: u32, out: *mut u8) => {
let result =
if let Ok(value) = this.memory.get(data, len as usize) {
tiny_keccak::keccak256(&value)
} else {
[0; 32]
};
let _ = this.memory.set(out, &result);
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
}
=> <'e, E: Externalities + 'e>
);
/// Wasm rust executor for contracts.
///
/// Executes the provided code in a sandboxed wasm runtime.
#[derive(Debug, Default)]
pub struct WasmExecutor;
impl CodeExecutor for WasmExecutor {
type Error = Error;
fn call<E: Externalities>(
&self,
ext: &mut E,
code: &[u8],
method: &str,
data: &CallData,
) -> Result<Vec<u8>> {
// TODO: handle all expects as errors to be returned.
let program = ProgramInstance::new().expect("this really shouldn't be able to fail; qed");
let module = deserialize_buffer(code.to_vec()).expect("all modules compiled with rustc are valid wasm code; qed");
let module = program.add_module_by_sigs("test", module, map!["env" => FunctionExecutor::<E>::SIGNATURES]).expect("runtime signatures always provided; qed");
let memory = module.memory(ItemIndex::Internal(0)).expect("all modules compiled with rustc include memory segments; qed");
let mut fec = FunctionExecutor::new(&memory, ext);
let size = data.0.len() as u32;
let offset = fec.heap.allocate(size);
memory.set(offset, &data.0).expect("heap always gives a sensible offset to write");
let returned = program
.params_with_external("env", &mut fec)
.map(|p| p
Gav
committed
.add_argument(I32(offset as i32))
.add_argument(I32(size as i32)))
.and_then(|p| module.execute_export(method, p))
.map_err(|_| -> Error { ErrorKind::Runtime.into() })?;
if let Some(I64(r)) = returned {
memory.get(r as u32, (r >> 32) as u32 as usize)
.map_err(|_| ErrorKind::Runtime.into())
} else {
Err(ErrorKind::InvalidReturn.into())
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[derive(Debug, Default)]
struct TestExternalities {
storage: HashMap<Vec<u8>, Vec<u8>>,
}
impl Externalities for TestExternalities {
type Error = Error;
fn storage(&self, key: &[u8]) -> Result<&[u8]> {
Ok(self.storage.get(&key.to_vec()).map_or(&[] as &[u8], Vec::as_slice))
}
fn set_storage(&mut self, key: Vec<u8>, value: Vec<u8>) {
self.storage.insert(key, value);
}
let mut ext = TestExternalities::default();
ext.set_storage(b"foo".to_vec(), b"bar".to_vec());
let test_code = include_bytes!("../../wasm-runtime/target/wasm32-unknown-unknown/release/runtime_test.compact.wasm");
let output = WasmExecutor.call(&mut ext, &test_code[..], "test_data_in", &CallData(b"Hello world".to_vec())).unwrap();
assert_eq!(output, b"all ok!".to_vec());
let expected: HashMap<_, _> = map![
b"input".to_vec() => b"Hello world".to_vec(),
b"foo".to_vec() => b"bar".to_vec(),
b"baz".to_vec() => b"bar".to_vec()
];
assert_eq!(expected, ext.storage);
}
#[test]
fn keccak256_should_work() {
let mut ext = TestExternalities::default();
let test_code = include_bytes!("../../wasm-runtime/target/wasm32-unknown-unknown/release/runtime_test.compact.wasm");
assert_eq!(
WasmExecutor.call(&mut ext, &test_code[..], "test_keccak256", &CallData(b"".to_vec())).unwrap(),
FromHex::from_hex("c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470").unwrap()
);
assert_eq!(
WasmExecutor.call(&mut ext, &test_code[..], "test_keccak256", &CallData(b"Hello world!".to_vec())).unwrap(),
FromHex::from_hex("ecd0e108a98e192af1d2c25055f4e3bed784b5c877204e73219a5203251feaab").unwrap()
);
}